
Manual

Version 4.6.0

Inhaltsverzeichnis

1 Analysis of RS422/485 Bus systems 1
1.1 Special serial driver software 3
1.2 Bus-tap 2-Wire Bus . 3
1.3 Double bus-tap 4-Wire bus . 4
1.4 Sampling . 4

2 MSB-RS485 Analyzer 5
2.1 Advantages of a hardware solution 5
2.2 Innovative software concept . 6
2.3 Application fields . 7

3 Features & Benefits 9

4 Specifications 11

5 Program Installation 15
5.1 Installation under Linux . 16
5.2 Manual installation under Linux 16
5.3 Installation for all users . 16
5.4 Program Updates . 17

6 Connection of the Analyzer 19
6.1 Definition of the Signal lines . 19
6.2 Internal Signal Processing . 20
6.3 Digital In/Outputs . 21
6.4 Bus Termination and Tapping 21
6.5 Tapping 2-wire system . 22
6.6 Segment Analysis 2-wire system 22
6.7 Tapping 4-wire system . 23
6.8 Segment Analyse 4-wire system 24
6.9 Signal assignment . 24
6.10 Lightment elements LEDs . 25

Green LEDs . 26
Red LEDs . 26

7 Program start 27
7.1 User Interface . 28
7.2 Select kind of connection . 28
7.3 The first start . 28

Automatical protocol scan . 28
Manual Protocol setup . 29
Start/stop a recording . 29

7.4 Status display . 29
Display I . 30
Display II . 30
Display III . 30

7.5 Config a recording . 31
Connection . 31

i

INHALTSVERZEICHNIS

Bus wiring . 32
Signals . 32
Record mode . 33
Autosave . 35
General . 35

7.6 The analysis tools . 35
7.7 Save a recording . 36
7.8 Save a session as a project . 36
7.9 Open an earlier recording . 37
7.10 Open an earlier session (project) 37
7.11 Last opened recordings and projects 37
7.12 Drag and drop . 37
7.13 Connecting multiple analysers 38
7.14 Automatical start after computer boot 38

Activate the autostart feature 39
7.15 Short commands . 39
7.16 Additional program arguments 40
7.17 Special program parameters . 41

8 The MultiView design 43
8.1 Synchronization . 43

Follow (autoscroll) . 44
Locked (fixed) . 44
Linked . 44

8.2 Views (displays) . 44
Virtual Ledtester . 45
DataView - Data Monitor . 45
EventView - Event Monitor . 45
ProtocolView - Protocol Monitor 45
SignalView - Signal Monitor . 45
Regions . 46

8.3 Copy Views . 46
8.4 Saving the state of the Views 46

9 Session management 47
9.1 Projects . 47
9.2 Store and reload projects . 48
9.3 Automatic storing of a session 48

10 The virtual Ledtester 49
10.1 The toolbar . 50

11 The Data View 51
11.1 User Interface . 51

Data channel selection . 53
Synchronizing . 53
Addressing the window content 53

11.2 Data selection . 54
Copy and Paste . 54
Save data selection . 54

ii

INHALTSVERZEICHNIS

Export a data selection . 55
11.3 Data displaying . 56

Columns and data format . 56
Coloring data . 56
Change the font . 57

11.4 The data inspector . 57
11.5 Searching the record . 57

Pattern search . 57
Search for time distances . 59
Search for transmission errors 60

11.6 The Watch window . 60
The script editor . 61
Example scripts . 61
Limitations . 62

11.7 The toolbar . 62
11.8 Short commands . 63

12 The Event View 65
12.1 User Interface . 65

Each line is one event . 66
All event types at a glance 66

12.2 Navigation through the event list 67
12.3 Event search with the LevelFinder 67

Enter a search pattern . 67
Formulate a level condition 68
Formulate a data error . 68
Formulate a data value 69

Search input and search . 69
Search for signal changes . 70
Searching with time specification 71

12.4 Mark a selection . 71
Save a selection as a region . 72
Export a selection as CSV file 72

12.5 Measure time distances . 74
12.6 The toolbar . 75
12.7 Short commands . 75

13 The Protocol View 77
13.1 User Interface . 78
13.2 Protocol Display . 80

Synchronizing the display . 80
Choosing a range . 80

13.3 Protocol Templates . 80
Define your own templates . 81
Modify an available template . 81
Template files and where you can find them 81
The template file manager . 82

13.4 Template language syntax . 83
Splitting the data stream into telegrams 83
Individual displaying of the datagrams 89

iii

INHALTSVERZEICHNIS

13.5 Filtering . 107
13.6 Export Telegrams . 110

How the program determines the export fields 110
The export dialog . 111
Export as CSV file . 111
Export as HTML . 112
Export as text . 112
Export as Latex . 112
Special notes about the caption labeling 112

13.7 ProtocolView specific Lua extensions 113
The base16 module . 114
Function bunpack . 115
The box module . 117
The checksum module . 118
The datetime module . 121
The debug module . 122
The event module . 124
The linestates module . 126
The protocol module . 127
The record module . 129
The shared module . 130
The string dump extension . 132
The telegram type . 132
The telegrams module . 137

13.8 Settings . 139
Show additional telegram information 139
Change the font . 140
Set an individual background 140
Lua compatibility . 140

13.9 The Toolbar . 140
13.10 Short commands . 141
13.11 Obsolete functions and modules 141
13.12 Lua References . 144

14 The Signal View 145
14.1 Signal representation . 146
14.2 Navigation . 147

Navigation by mouse wheel . 148
Shift with the hand cursor . 148

14.3 The time base . 148
14.4 Undo and Redo . 148
14.5 Settings dialog . 148

The signal dialog . 149
Signal inverting . 149
Signal sequence . 149
Fade in the transfered data 149

Grafical effects . 150
14.6 Cursor operating . 150

Signal selection . 151
Regions . 151

iv

INHALTSVERZEICHNIS

14.7 Synchronizing . 151
14.8 The toolbar . 152
14.9 Short keys . 153

15 Regions 155
15.1 Switch regions on/off . 156
15.2 Remove a region . 156
15.3 Rename a region . 156
15.4 Move regions into view . 156

16 A quick start with Lua 159
16.1 Getting started . 159
16.2 Accessing the Data Monitor . 160
16.3 Mark sequences in the data grid 161

17 Lua beginners guide 163
17.1 Lua is case-sensitive . 163
17.2 Whitespaces and line ends . 163
17.3 Comments . 164
17.4 Types and values . 164

Numbers . 165
Booleans . 165
Strings . 165
nil . 166
Tables . 166
Functions . 168

17.5 Identifiers . 168
17.6 Keywords . 168
17.7 Variables . 168

Assignment . 169
Global and local variables . 169

17.8 Operators . 169
Arithmetic operators . 170
Conditional operators . 170
Logical operators . 170
String concatenation operator 170
The length operator . 171
Precedence . 171

17.9 Control structures . 171
if then else . 171
while . 172
repeat . 172
Numeric for . 172
break . 172

17.10 Functions . 173
Function call . 173
Function definition . 173

17.11 Modules . 174
Standard Modules . 174
Analyzer Modules . 174

v

INHALTSVERZEICHNIS

Bit Module . 175
Data View Module . 176
Record Module . 176

17.12 Analyzer specific data types . 177
17.13 Limitations . 178
17.14 Further information . 179

18 Synchronize two analyzers 181
18.1 Technical requirements . 181
18.2 Master Slave operation . 182
18.3 Establish a synchronous record 183
18.4 Analyse a synchronous record 184
18.5 Conclusion . 185

Synchronous recording . 185
Synchronous analysis . 186

19 Commandline API 187
19.1 Combine the programs as a tool chain 188

Data source . 188
Manipulators . 188
Data sink . 188
Some examples . 188

19.2 Record data with msb_record 189
Connection settings and events 190
Usage in your own application 190
Remote control . 191
Synchronous recording with two or more analyzers 191
Remote control a synchronous record 193
msb_record program parameters 194

19.3 Formatted output with msb_format 196
Output of any character . 198
File output . 198
Format parameters . 198
User defined date and time . 201
msb_format program parameters 203

19.4 Filtering data output with msb_filter 204
Filter data . 204
Filter certain signal events . 205
Filter a given record part . 205
msb_filter program parameter 205

19.5 Split records with msb_split . 206
Split existing record files . 206
Splitting the current recording from msb_record 208
msb_split Program Parameter 208

19.6 Trigger a record with msb_trigger 209
Define a trigger condition . 209
Conditional start of a record with pre and post-trigger 211
Conditional output of an existing record file 212
Scan a record file for certain events 212
One script for scan and trigger 213

vi

INHALTSVERZEICHNIS

Provided Lua modules . 214
msb_trigger Program Parameter 215

19.7 One config file for all . 216

A ASCII character table 217

B Baudrate measuring 219

C Colors 221
C.1 RGB short form . 221
C.2 RGB long form . 221
C.3 Predefined color names . 221

Grey colors . 222
Basic colors . 222
Extended colors . 222

D Windows Trouble-Shooting 225
D.1 Windows doesn’t found the analyzer (Part I) 225
D.2 Windows doesn’t found the analyzer (Part II) 226
D.3 MSB-RS485 Device quit working unexpectedly 226
D.4 Other problem . 227

E Linux Trouble-Shooting 229
E.1 Linux doesn’t found the analyzer (Part I) 229
E.2 Linux doesn’t found the analyzer (Part II) 229
E.3 Linux doesn’t found the analyzer (Part III) 230
E.4 Recording doesn’t work . 231
E.5 Segmentation fault during installation 232
E.6 The help menu Help→Content F1 doesn’t work 232
E.7 The software doesn’t run within a 64 bit Linux (Part I) 232
E.8 The software doesn’t run within a 64 bit Linux (Part II) 232
E.9 Other problem . 233

vii

INHALTSVERZEICHNIS

viii

1
Analysis of RS422/485 Bus systems

In contrast to other busses RS422 or RS485 define only the
electrical characteristics. All further protocol levels can be
specified freely. So beside the physical features an analysis also
has to regard the different protocols.

RS485 and RS422 (or. EIA-422 and EIA-485) are mostly used synonymously
because of their great similarity, where the EIA-422 standard is seen as a sub-
set of EIA-485. But this is correct only partially.
Both standards use a pair of twisted wires to transmit the inverted and non-
inverted levels of a one bit signal. The receiver reconstructs the original data
signal from the difference of both signal levels. In this way common mode dis-
tortions do not have much effect on the transmission which leads to a significant
higher noise immunity.
As a consequence all data and handshake lines are designed as wire pairs.
However no standardized terminal assignments for EIA-422 and EIA-485 exist.

A EIA-422 connection generally consists of two pairs of wires for send and
receive and a common ground line which is conform to the classical EIA-232
connection. In case of RTS/CTS Handshake two additional wire pairs have to
be used. EIA-422 primarily was developed to overcome the limitations of EIA-
232 connections.
With EIA-422 Full-Duplex point-to point transmissions and Multidrop networks
can be realized. The latter allows the unidirectional connection of up to 10 re-
ceivers, in which the transmission takes place in one direction only from the
sender to the maximal 10 receiver.

EIA-485 was designed as a bidirectional bus system for up to 32 (and mo-
re1) participants. Data can be transmitted optionally over a singe pair of wires
Half-Duplex (the so-called 2-wire technology or short 2-wire) or in a Fullduplex
capable way with two separate send and receive wire pairs (4-wire).
In a 2-wire system all sender and receiver are connected together through a
single pair of wires. The main advantage of the 2-wire technology is its Multi-
Master capability. Each bus device can exchange data with any other device.
A well known application based on a 2-wire system is the PROFIBUS.

1depending on the so-called unit load it may be up to 256 participants

1

KAPITEL 1. ANALYSIS OF RS422/485 BUS SYSTEMS

4-wire busses (for instance the DIN-Messbus) are solely used as Master-Slave
systems. That means that the data output of the master is connected to all data
inputs of the slaves through a single wire pair. The data outputs of the slaves
are all connected to the second wire pair which leads to the data input of the
master.
In both variants only one device can drive (send), all other devices have to set
their sender into tri state mode.
Some EIA-485 devices automatically care for a correct implementation of the
tri state status (tri state when no data is sent), others have to be explicitly set
into tri state by software control.

Physically both interfaces are almost identical so that EIA-485 devices can be
used without problems in EIA-422 systems. But this is not possible the other
way round, because EIA-422 drivers do not have the tri state mode which is
necessary to operate multiple devices on one wire pair.

The analysis of a EIA-422/485 connection does not only have to care about
the different connection varieties (and the bus signals). The EIA-422/485 spe-
cifications do not make a statement about the protocol levels. So a number of
different transfer protocols are established, protocols with asynchronous (UART
based) and synchronous serial data transmission.
Protocols with synchronous data transmissions use different kinds of bit co-
ding, with or without synchronizing clock, and use special coding hardware.
In contrast the asynchronous transmission technologies are based on the UART
which is the standard for serial interfaces and is installed in every PC and mi-
crocontroller. Because of its simply way of connecting (with EIA-232 or USB to
EIA-422/485 converters) these protocols are widespread why in the following
we focus on UART based asynchronous protocols. These are some of them:

1 Din-Messbus
2 Modbus ASCII
3 Modbus RTU
4 Profibus
5 Application specific protocols

The kind of the protocol plays a very important role not only for the logging and
evaluation of the communication but also for the right choice of the analysis
tools.

After this short side-note to the specification of EIA-422/485 the basis is laid for
the question: Which possibilities for analysis of EIA-4852 communications are
available and where are they appropriate for?

Because of the simple connection of EIA-485 busses, based on asynchronous
data transmission, to a standard PC the following techniques for logging and
evaluation are possible with appropriate software:

1 Data logging by the serial driver and additional software of the PC
2EIA-485 Analysis tools are also appropriate for EIA-422 connections. In the following chapters

we speak about EIA-485 only, meaning both standards.

2

1.1. SPECIAL SERIAL DRIVER SOFTWARE

2 Bus-tap by one EIA-485 converter (2-wire bus)

3 Bus-tap by two EIA-485 converters (4-wire bus)

4 Sampling of the bus lines by special additional hardware

1.1 Special serial driver software
If one of the participants of the communication is a PC (usually the master)
an appropriate driver can be installed to protocol every sent and received data
byte. This procedure only allows the logging and detecting of the data bytes
which are processed by the serial driver of the operating system. The disad-
vantages are:

Data losses due to buffer overflows are not detected.

A precise time stamping is not possible. Indeed the received and sent data by-
tes are signalized by interrupt. But the interrupt is processed by the operating
system after a not exact predictable time delay.

Therefore the time measurement of such Sniffer programs, most time in the
millisecond range, have to be regarded with suspicion. The times are the times
when the operating system handles the input and output of the characters.
They are not the moment the character is really present on the data line.
A statement about correct data and protocol timing can only be done with care.
Some busses as Modbus RTU or Profibus define a send pause as the start or
end of the data telegram. Data within a telegram have to be transmitted without
gaps.
Information about the tri-state condition get lost since the serial driver can pro-
cess the two logical bus states only. Errors caused by data collision by reason
of multiple sending bus participants can not be detected.

1.2 Bus-tap 2-Wire Bus
The PC is connected via an appropriate EIA-485 interface converter (EIA-232
to EIA-485 or USB to EIA-485) as an additional bus participant to the bus.
This variant allows the logging of all transmitted data bytes with e.g. Hyperterm.
The disadvantages:

Since send and receive data run over the same wires it is not possible to distin-
guish between sent and received data. A detailed examination of the telegrams
is necessary to detect the data direction.

The behavior of the time measurement is the same as mentioned under 1.1.

The connection of a EIA-485 converter is normally done as a serial COM port
(either as a virtual COM port in case of a USB to EIA-485 converter or direct in
case of a EIA-232 to EIA-485 interface converter).
In both cases the information about the tri-state condition gets lost with the
consequence that bus errors, caused by multiple active senders, can not be
recognized.

3

KAPITEL 1. ANALYSIS OF RS422/485 BUS SYSTEMS

1.3 Double bus-tap 4-Wire bus
The send and receive lines are separately recorded. However this way needs
two EIA-485 converter and special drivers since the recorded data bytes have
to be marked with a time stamp or unique number to synchronize both data
streams.

The data direction is correctly recognized but the data sequence is not always
clear because of the interrupt delays, explained above. This possibility was
used under MS-DOS since this operating system allowed the direct real-time
processing of the interrupts.
The statements about time measurement and the tri-state condition are the
same as under 1.2.

1.4 Sampling
This method needs additional independent hardware to simultaneously sample
all signal lines and produce correspondent results. The advantages:

Because the sampling and evaluation is independent of the connected devices
and the PC invalid tri-state conditions, wrong baudrates or UART settings are
clearly detected and logged.

Furthermore the parallel sampling of all signal lines allows precise time stamps
for the data lines and optional handshake lines like RTS/CTS for point to point
connections. This is mandatory for examination of protocols which have to fol-
low exact timing rules.
More: Even jittering or slightly deviating baudrates of single bus devices can be
detected.

Sampling analyzers combine the advantages of protocol analyzers with the
features of a digital scope and offer beside the logging of the data transfer also
the physical or logical display of the line levels.

4

2
MSB-RS485 Analyzer

The MSB-RS485 Analyzer is an essential tool for analysis and
optimizing of RS485/422 connections. As an autonomous device
it gathers exact information about every line change with micro
second precision, independent from the PC and its operating
system.
Equipped with a multitude of visualization tools it allows a
detailed view into every RS485/422 communication and detects
conditions which can be recorded by a true ’hardware solution’
only.

The Analyzer MSB-RS485 samples all eight signals simultaneously with a samp-
ling rate of maximum 16 MHz. Thereby all events, that means level changes on
the line, are stamped with the exact time in a micro second precise resolution.
As events all changes of the line levels are regarded, including the tri-state.

Max. 16MHz sampling
cares for clear details and
µsec precise time stamps

That means a change from 0 (space) to 1 (mark) and from an inactive (tri-
state) to an active logical level (and of course vice versa).
The recorded data are transferred via USB to the PC at which a 500kByte ca-
che memory serves as a buffer to avoid data losses.
The recording is not limited. Date types with 64 bytes for the µs precise ti-
me stamps guarantee any length of recording, even with this time resolution
(if you define 500000 years as unlimited).The recording depends only on the
maximum allowed file length (disc capacity).

2.1 Advantages of a hardware solution
The MSB-RS485 Analyzer offers the capabilities of a logic analyzer, combined
with a very low price. With it the disadvantages of pure software solutions are
avoided by the direct evaluation of the signal changes in an independent hard-
ware.
Analyzing solutions, based on software, depend on the not constant reaction
and computing times of interrupts in the operating system. The usage of EIA-
422/485 to USB converters add unpredictable delays of the USB subsystem.
Furthermore the hardware input Fifos of the PCs are normally limited to 16
characters and 115200 Baud. If the interrupt handling is too slow characters
will get lost because of the input buffer overflow.
The resulting time stamps are the times of the interrupt execution, not the real
time of the occurred events.

5

KAPITEL 2. MSB-RS485 ANALYZER

Correspondingly the chronological relationship between the send and receive
data is imprecise if two EIA-485 converter are used for logging of a full duplex
4-wire connection (T+, T-, R+, R-).

Especially if using protocols with a an exact to follow timing relationship (e.g.
max. pause between the single data bytes of a telegram or pause between the
telegrams themselves like requested by ModBus RTU or Profibus)) you will not
be sure if the measured timing is the real bus timing.

In contrast to traditional converters the MSB-RS485 analyzer also supports
protocols with 9 bit data length. 9-bit values are used for certain binary pro-
tocols to differ between data and address bytes or to indicate the frame or
telegram start.

By connecting the EIA-485 bus via serial interface all information about the
tri-state condition get lost. The consequence is that data collisions caused by
multiple simultaneously active driving senders can not be detected. The MSB-
RS485 detects the tri-state level correct even if the differential signal is drawn
to a certain rest level (Idle, Pull up, pull down resistors).

The MSB-RS485 analyzer and pure software solutions in comparison:

Feature MSB-RS485 Software
solution

Detects invalid levels (tristate) yes no

Any Baudrate 1 Baud to 1 MBaud yes no

Real time stamps yes no

Time resolution 1 micro second yes no

Display of the real level changes yes no

Automatic detection of baudrate and protocol yes no

Supports protocols with 9 Bit data word length yes no

Correct time relationships between data and
control lines

yes no

Detects baudrate jitter and wrong bit times yes no

2.2 Innovative software concept
Already while recording any section of the data transfer can be investigated.
This includes the physical display of the signals in different time resolutions
(scope display) as well as the display of the transferred data bytes.

The software of the analyzer is designed as a Multi-Process Architecture. Whi-
le the control program controls the recording the transferred data can already

6

2.3. APPLICATION FIELDS

be checked, evaluated and searched in any number of analysis windows in dif-
ferent time resolutions.

In this way the logical signal of a 2-wire bus or of both data lines can be followed
and at the same time an earlier section can be watched in a higher resolution.
That is also possible in all other analysis windows and allows the comparison
of transferred data at different moments.

Extensive search mechanisms allow the search for defined data sequences,
where also complex search requests are possible. That is done via regular
expressions and could be:
All data strings which start with an ’A’ and end with ’Z’. Also a search for defined
levels or level changes can be done. The MSB-RS485 analyzer is supplied via
USB from the PC and is appropriate for mobile operation when using a Laptop
or notebook.

MultiPlatform Support
Versionen für Windows

und Linux

Application specific protocols and telegrams can be displayed with the help of
the integrated script language LUA.

Analyzer and software run under Microsoft Windows or Linux. MultiPlatform
Support Version for Windows and Linux.

2.3 Application fields
The analyzer MSB-RS485 finds its use for logging and evaluating of asynchro-
nous data transmissions based on the EIA-422/485 specifications. This inclu-
des 2-wire, 4-wire and EIA-422 full duplex connections inclusive handshake
lines.

The high chronological time resolution of one microsecond allows a precise
timing analysis of the watched communication and detailed information about
the reaction times in EIA-422/485 protocols.

By the active sampling of all wire pairs bus conflicts, evoked by faulty implemen-
tation of the tri-state condition, can be clearly detected. This is also possible if
the data bus is drawn to the usual idle level of 200mV by pull up, pull down
resistors.

Typical application are:

Industrial interface applications

Fabric automation

Industrial networks

Building services engineering

Maschine controlling and automation technics.

Embedded devices

7

KAPITEL 2. MSB-RS485 ANALYZER

8

3
Features & Benefits

The MSB-RS485 analyzer offers all necessary features for an
effective examination of EIA-422/485 connections. In particular
for debugging, recording, tests and ’reverse engineering’.

Simultaneous sampling of all lines by external hardware : Exact measu-
rement of all EIA-422/485 signals with a precision of 1µsec and a maximum
sampling rate of 16 MHz, independent form the PC operating system. No wrong
time stamps or event sequences due to delayed or not answered system inter-
rupts (software solutions).

Any baudrate with FLEXUART: High-precise set and measurement of standard
and non-standard baudrates in the range from 1 Baud up to 1 MBaud with a
resolution of 0.1% of value. Recording and analysis with any, even unusual,
baudrates. Detection of asynchronous or drifting baudrates between sender
and receiver.

Automatic protocol detection : Simple check and analysis of any communi-
cation with unknown connection parameters.

Supports 9 Bit Data words : Recording and analysing also of protocols with
9 Bit data word length.

Scope-like display of the data lines : Simultaneous display of the logical si-
gnals as well as the transferred data. That makes the error analysis and search
easy for transmission errors, i.e. improper bit rates (jitter) or wrong data for-
mats. Measuring of the real signals with the integrated bit ruler.

Segment-Analysing : Direction specific analysis of single bus segments or
bus participants and therewith isolating of erroneous send devices by transpa-
rent bus disconnection.

2 digital input/output channels : Recording of two additional control lines
(signals), output of the bus direction or bus state (active/inactive) for triggering
of external measuring equipment.

Protocol template : Define own rules how your data shall be displayed or
visualize any application specific protocols.

Data analysis in real time : Examination of the connection already while re-
cording the data.

Detection of invalid line levels : Detecting of open lines, invalid Tri-States and
bus conflicts.

9

KAPITEL 3. FEATURES & BENEFITS

Framing, Parity, Break Detection : Direct analysis of error conditions and the
reactions of end devices thereon.
Pattern search with regular expressions : Makes the search for any data
sequences possible with wild card characters and time distances or pauses
between data strings.
Integrated LevelFinder : Finds any static level, level change or error condition.
Combined with the search of defined data bytes it is a precious tool to analyze
hardware protocols.
Integrated Lua script language : To define, visualize, compute (check sum
test) and convert the recorded data.
MultiView concept : Simultaneous analysis of the recorded data at different
positions with multiple tool windows. That’s a very powerful help to compare the
transferred data with their logical signal level or to compare different sections
of the data stream.
Copy And Paste : Simple copying of recorded protocol or data sequences into
other applications for further evaluation or documentation purposes.
Data export as CSV: For further evaluation of the logged data in Microsoft
Excel or other spread sheet programs. That makes the full toolset of these
programs available for statistic examination, sorting and other computations.
Direct display of the data stream by green Leds : Additional indication of
the data flow, quick check for a correct data connection.
Future-proof by modern FPGA technology : Integrated state of the art gate
array technology allows permanent advancements and adaption to different
applications. The updating is done simply at start of the software.
Synchronize of two analysers with mikrosecond precision: The internal
Link jack provides the user with a time synchronious recording of two different
RS232/RS422/485 connections.
Internal memory of 512 kByte : USB transfer buffer of 512 kB for measure-
ment data to avoid data losses while recording at high baudrates.
Multi-Platform Support : The MSB-RS485 software is delivered as ’native bi-
nary’ for Microsoft Windows and Linux. No emulation, no additional libraries,
no installation of .NET R©or Java R©.
Multi-Language Support : German and English language support. The selec-
tion is done automatically according to the used operating system, but can be
changed manually.
Multi-Process Architectur : The splitting of different functions into different
programs or processes guarantees high data security while recording and pro-
vides a better adaption to the system resources and CPU load time.
Compact housing with USB connector : No additional power supply ne-
cessary. Mobile operation even with laptop.

10

4
Specifications

General
Protocol analyzer for recording and analysis of asynchronous EIA-422/485
connections (2-wire, 4-wire, half- and fullduplex) by parallel sampling with a
maximum of 16 MHz. Precise measurement of all data and bus signals with a
resolution of 1µs.
Decoding of the bus lines T+, T–, R+, R– including the Tri-State with any baud-
rate in the range from 1 Baud to 1 MBaud.
Automatic detection of baudrate and protocol.

EIA-422/485 Measurement
Any baudrate with FlexUart
High-precise setting and measuring of standard and non-standard baudrates
in the range from 1 Baud to 1 MBaud with a resolution of 0.1% of the set resp.
measured value.
Data formats
Parameter for serial data transmission: 5 to 9 data bits, parity off, even, odd,
constant 0 or constant 1.
Logical line state
Logical level (A-B): 1 (V+), 0 (V-), invalid (–0.7V <In <+0.7V)
Time resolution
All lines are exactly sampled and marked with 1µs time stamps, independent
of the operating system of the PC.

EIA-422/485 connectors
Signal levels
Standard EIA-422/485 level ±0.2V to ±12 V, ESD protected inputs 12kOhm,
Common Mode ±7V. Detection of the tri-state level of differential signals below
±0.7V
Bus Connectors
Connector: 2* Phoenix MC 1,5/ 6ST-3,5 with 2mm screw connectors, 6 pins
each.
Intern connections
All connections from Port 1 and 2 are connected through high speed transcei-
vers and are automatically switched in correspondence to the selected connec-
tion mode and data direction.

11

KAPITEL 4. SPECIFICATIONS

Additional features
Auxiliary In-Outputs
Two additional terminals, each individually switchable for recording of external
signals or for outputting of bus status signals. Input: 0-5V, Trigger level 1,65V,
25KOhm Pull down Output: 0/5V ca. 10mA
Cache
Internal cache memory of 512 kB for buffering of measuring data when recor-
ding data with high transfer rates.
Status LEDs
Leds for displaying of: red: recording status and buffer load, green: bus data
flow.

Power supply
The analyzer is directly supplied from the USB cable. The consumption is about
200mA. USB Ground is the same as EIA-422/485 Ground.
No external power supply necessary.

Supported Operating Systems
Windows
Windows 2000, Windows XP, Vista (32 and 64 Bit)
Linux
All Linux with kernel from 2.4.18 and installed Gtk2 libraries (are standard). In
case of doubt you can test the Linux version from our download page. 32 and
64 Bit Systems.

Dimensions
Abmessungen
100mm x 50mm x 25mm (Length, width, height)
Weight
ca. 100g

Scope of delivery
Analyser
MSB-RS485 analyzer device.
Connection Set
Connection set consists of:
2* 6-pin Phoenix screw connector
4* termination resistors 120 Ohm if analyzer is end devcie
4* short circuit wires for various connection variants.
1* Screwdriver for Phoenix connectors
1* USB Cable for connection to PC

Software
CD for Windows and Linux, Manual as online help and PDF document in Ger-
man and English.

12

Requirements
Graphical display
Graphics board and monitor with at least 1024x768 pixel resolution and 16 bit
color depth or more.
Disk space
100 MByte empty space for the software installation plus additional space for
the recording files.
Memory
256 Mbyte or more
USB connector
One empty USB 1.1 or 2.0 connector (full speed).

13

KAPITEL 4. SPECIFICATIONS

14

5
Program Installation

The MSB-Analyzer software is available for Microsoft Windows as
well as for Linux. Both versions are contained on the program CD
and are both offered to your system for installation. What you
have to regard is mentioned in the following chapter.

The MSB-Analyzer is connected via USB to the PC and communicates through
a virtual COM port. Under Microsoft Windows the respective VCOM driver is
installed automatically.
Linux distributions from kernel 2.4.18 already contain the right module ftdi sio,
functional for the analyzer.
The software is bilingual (German and English) and can be installed even wi-
thout analyzer, e.g. to evaluate earlier captured data. Or if you want to check
out the capabilities of the Analyzer by examining the enclosed sample files.

Installation under Windows
Close all running applications before inserting the CD-ROM. Do not connect
the MSB-Analyzer before you insert the CD-ROM. Connect the analyzer after
the program installation is finished.

1 Insert the installation CD-ROM
The IFTOOLS product installer is invoked. When it does not automatically start
double click onto the My computer symbol on your desktop or open it from
the start menu. Double click onto the IFTOOLS-Setup-CD icon to start the IF-
TOOLS product installer.

2 Selecting the product
In the product list at the left side click on the relating analyzer (MSB-RS232 or
MSB-RS485). Start the software installation inclusive the necessary driver with
a single click onto
installation (Version 4.6.0). Probably it takes a moment until the in-
staller is displayed.

3 Install the software
Proceed according to the hints on the screen. The necessary driver is automa-
tically installed together with the operating program.

15

KAPITEL 5. PROGRAM INSTALLATION

5.1 Installation under Linux
Modern Linux distributions offer the same comfort for program installations as
Windows. Just as under Windows this behavior has to be activated before.
Your Linux system has to mount the CD as executable. If this is the case the
installation runs as under Windows.

1 Insert the installation CD-ROM
The IFTOOLS product installer is invoked. Depending on the distribution you
are asked if you want to activate the autorun feature. Answer with ’yes’. If the
installer does not automatically start read the following chapter ’Manual instal-
lation under Linux’.

2 Selecting the product
Click on the relating analyzer (MSB-RS232 or MSB-RS485) in the selection list
at the left side. Start the software installation with a click onto
Installation (Version 4.6.0).

3 Install the software
Proceed according to the hints on the screen. The necessary kernel module is
part of all kernel since kernel version 2.4.18 and does not have to be installed.

5.2 Manual installation under Linux
If the IFTOOLS product installer does not start after inserting of the CD please
follow these steps:

1 Open a console
2 Copy the installation file onto your desktop

Enter the following command:

cp PATH_TO_CDROM/programs/msb/msb-4.6.0-linux-installer.run ~/Desktop

3 Make the installation file executable
by setting the executable flag with:

chmod +x ~/Desktop/msb-4.6.0-linux-installer.run

4 Start the installation file
via mouse click (double click). Alternatively you can also run the installer in the
text mode in case of the graphical installer did not start:

sudo ~/Desktop/msb-4.6.0-linux-installer.run --mode text

5.3 Installation for all users
The installation needs only root rights if you like to install the software for all
users (system wide). For instance: if the relating software files should be wrote
to /opt or /usr/local. In this case start the installation file under KDE with:

kdesu ~/Desktop/msb-4.6.0-linux-installer.run

16

5.4. PROGRAM UPDATES

Under Gnome either with:

gnomesu ~/Desktop/msb-4.6.0-linux-installer.run

or

gksu -k ~/Desktop/msb-4.6.0-linux-installer.run

Alternatively you can also start the installer in the text mode. This makes sense
if the graphical installer did not start or you want to execute it simply by root
or via sudo command:

sudo ~/Desktop/msb-4.6.0-linux-installer.run --mode text

5.4 Program Updates
IFTOOLS issues software updates in irregular intervals with new features and
improvements. These updates are free of charge can can be loaded from the
following address https://iftools.com/download
The update are complete program versions which also contain in the Windows
version the current driver. Updates can be installed in parallel to your current
MSB-Analyzer program version. Windows user only have to execute the update
file.
Under Linux it is necessary to make the file executable and then to start it like
described above.

17

https://iftools.com/download/index.en.php

KAPITEL 5. PROGRAM INSTALLATION

18

6
Connection of the Analyzer

How do I connect the analyzer to my PC? How do I insert it into
the the connection I want to monitor? What is the meaning of the
LEDs? These and other questions will be answered in the
following chapter.

The EIA-422/485 specification do not specify a certain association to the connec-
tor pins. Therefore the type of connection is depending on the application.
To allow an easy adaption of the analyzer to different bus systems the MSB-
RS485 is equipped with two 6-pin sockets for Phoenix connectors with screw
terminals. An appropriate connection kit including plug connectors, termination
resistors, wires and screw driver is enclosed.
The connector marked with PC USB is used to connect the analyzer with an
unassigned USB port of your PC where your analyzer software is or shall be in-
stalled. The energy support is made through the USB cable so that you do not
have to use an extra power supply. In this way you can easily use the analyzer
together with a laptop in mobile operation, the current consumption is about
250 mA.

6.1 Definition of the Signal lines
Unfortunately the naming of the both twisted lines of an EIA-422/485 connecti-
on is not consistent.
The EIA-485 specification defines line A as the not inverted signal or ’+’ termi-
nal and line B as the inverted or ’−’ terminal.
This is in conflict with the A/B naming of a number of transceiver manufactur-
ers. Details can be found at: http://en.wikipedia.org/wiki/Rs485. Even if their
naming of the signals A/B is in contrast to the standard, it is wide-spread. To

19

http://en.wikipedia.org/wiki/Rs485

KAPITEL 6. CONNECTION OF THE ANALYZER

avoid more confusion the terminals of the analyzer MSB-RS485 are simply mar-
ked with ’+’ and ’−’, which correspondents to the not inverted and the inverted
signal of a EIA-RS485 wire pair.
So connect the not inverted bus line with the ’+’ input and the inverted line with
the ’−’ input of the analyzer.
The following table lists some of the most used line names:

EIA-485 MSB-RS485 Customize naming

A+ + TX+, TX+/RX+, D+, Data+, (Y)

B− – TX–, TX–/RX–, D-, Data-, (G)

A+ + RX+1

B− – RX-2

1,2 only for full duplex 4-wire systems.

6.2 Internal Signal Processing
The MSB-RS485 Analyzer has four differential inputs CH1 to CH4 which are si-
multaneously sampled and recorded. For every channel the physical signal is
available as display of the logical states.
Two integrated UARTs handle the decoding of the serial data stream into single
data bytes. These UARTs are automatically connected to two of the four diffe-
rential inputs CH1 to CH4. By this variable connecting a number of connection
types and analysis functions can be implemented.

In this way the MSB-RS485 Analyzer allows besides a plain tapping of the bus
lines also to feed the bus through the analyzer. This is done by splitting the bus
into two parts whose ends are connected to CH1 and CH2. Both UARTS care
for the independent decoding of both bus segments while the bus data flows
bidirectionally through the analyzer.

A combined mode where one bus is split and a second one is tapped allows
the filtering of single bus devices even in full duplex 4-wire connections.

Two additionally generated tri-state signals support this way of analysis by de-
livering information about the validity and direction of the bus data and the
common (fed through) data signal. Both tri-state signals are listed in the follo-
wing table:

Notation Mark (1) Space (0) invalid

Bus-Dir
(Data direction)

CH2→ CH1 CH1→ CH2 Bus undriven

Bus-Signal fed through
Bus-(Data)-Signal

fed through
Bus-(Data)-Signal

no data

20

6.3. DIGITAL IN/OUTPUTS

6.3 Digital In/Outputs
The MSB-RS485 Analyzer offers two additional digital IO-channels which can
be optionally used as auxiliary inputs for recording of logic signals or as outputs
for indication of status information.
The latter allows the output of the bus data direction and the validity of the bus
either of single segments or of the fed through bus lines. The following settings
are possible, separately for both IO-channels:

IO-Type Description

Input Input with pull down resistor

Input Input with pull up resistor

Output Output static 0

Output Output static 1

Output Bus data direction between CH1 and CH2 (segment analysis): 0 :
CH1 → CH2 1 : CH2 → CH1

Output Activity of the bus through CH1 and CH2 (segment analysis):
0: inactive (Tri-state), 1: active

Output Bus activity of CH1 1: active, 0: inactive (tri-state)

Output Bus activity of CH2 1: active, 0: inactive (tri-state)

Output Bus activity of CH3 1: active, 0: inactive (tri-state)

Output Bus activity of CH4 1: active, 0: inactive (tri-state)

6.4 Bus Termination and Tapping
EIA-422 are usually designed as full duplex point-to-point connections, some-
times together with additional line pairs for hardware handshake.
Whereas a EIA-485 connection is generally implemented as a multi-master ca-
pable 2-wire system (half duplex) or as a full duplex 4-wire system based on a
master-slave configuration.

All serial bus systems have in common that the signals allow no inferences on
direction and source of the data.
The MSB-RS485 analyzer offers the possibility to split the inspected connection
into two segments and/or bus participants.
With this so called ’segment-analysis’ the data of a single (or several) bus de-
vices can purposefully be monitored independently of the rest of the bus and
can be directly assigned without regarding the protocol.

The MSB-RS485 Analyzer has 4 differential Inputs and 2 integrated FLEXUART’s
available. These Uarts are connected to the inputs according to the selected
connection mode and process the decoding of the serial data stream into sin-
gle data bytes.

To make the connection and assignment as simple as possible the analyzer of-
fers a selection of various combinations for bus system and taping (the connec-

21

KAPITEL 6. CONNECTION OF THE ANALYZER

tion mode or short wiring), which are in accordance with the following variants.

6.5 Tapping 2-wire system
For connecting a 2-wire system the bus resp. the wire pair is simply connected
to the terminals at Port1, CH1. CH2 and the pins of Port2 remain unconnected.
Connect the inverted line of the bus to the ’–’ input of CH1 and the not inverted
line to the terminal ’+’ of CH1.

The name 2-wire system implies the use of the line pair only but the correct
treatment of ground is mandatory. If the inspected bus has a signal ground line
connect it to the correspondingly marked terminal at port 1.
This simple method of tapping does not need additional terminating resistors.

Tapping 2-wire
for a half duplex bus
(Modbus, ProfiBus)

In this connection mode the analyzer records all transmitted data independently
of source and direction. To get more information about the sender of the data
you have to know the corresponding used protocol.

6.6 Segment Analysis 2-wire system
In contrast to the plain tapping of the data signal the MSB-RS485 is inserted into
the bus. In doing so the bus is split into one segment on the left side and one
segment on the right side of the analyzer.
This kind of wiring is more complex but it has some advantages over the plain
tapping.

The analyzer becomes the interface between any two bus segments. The data,
flowing through this interface, are collected together with their direction so that
they can be clearly assigned to the corresponding segment. If the segment
consists of only one bus device the data sent from this device can be easily
assigned to this device independently from the remaining bus communication -
even without having to know the used protocol.

Split the bus at the required point and connect the wire pair of the first segment
to the terminals of the first analyzer channel Port1, CH1 (CH1+, CH1–)
The second bus segment is connected to the second analyzer channel Port1,
CH2 (CH2+,CH2–).
The bus is now split into two segments. Please note that you possibly have to
terminate the new bus ends. In this case you can directly connect the resistors
to the terminals of CH1, CH2.

22

6.7. TAPPING 4-WIRE SYSTEM

The same applies for pull up/down resistors. By the splitting the bus one seg-
ment is now without these resistors for setting the idle level. They are normally
attached at one bus end only and their values are system dependent. Please
check if they have to be added.

2-wire Segment
Analysis
for half duplex bus
(Modbus, ProfiBus)

The analyzer records the data of both segments independently while the data
of both directions are passed fully transparent. Data of the first segment are
marked as coming from channel 1 with the internal name ’A’, data of the second
segment are marked as coming from channel 2 with the internal name ’B’.
A and B are initially two different data sources within the analyzer and are
assigned to the physical input channels according to the selected wiring.

6.7 Tapping 4-wire system
In point-to-point connections like used for EIA-422 transmissions over long di-
stances (EIA-232 replacements) only two bus devices are available communi-
cating over two different send and receive channels. A double tapping is suffi-
cient and guarantees the correct recording of the data direction.

This kind of wiring is also used for analysis of full duplex EIA-485 connecti-
ons (as DIN-Messbus, Master-Slave) if you do not need to watch a special bus
device singularly and if you can assign the data to the bus participants by eva-
luating the protocol.

Connect the send line pair to the terminals CH1+, CH1- of Port 1 and the re-
ceive line pair to CH2+,CH2- of Port 1.

Tapping 4-wire
full duplex EIA-422/485
(Din Messbus)

23

KAPITEL 6. CONNECTION OF THE ANALYZER

All data from channel 1 are named as A and all data from channel 2 are named
B.

6.8 Segment Analyse 4-wire system
Bus systems with full duplex 4-wire connection (Master-Slave bus, Din-Messbus)
also use separate send and receive channels.
While the master is connected as sender (Masterbus) to the receivers (Slaves)
these return their answers on the second channel (Slavebus) to the master. To
monitor the send data from the master a single tapping of the master bus is
sufficient.
In contrast the slaves share one channel to send their data back to the master.
With the help of the segment analysis a singular device can intentionally be
separated and its communication with the master monitored without regarding
the other devices.

Like for the 2-wire segment analysis you have to split the slave bus at the ap-
propriate point.
Both segments of the slave bus have to be connected to CH1 and CH2 of Port
1. Please note that possibly the ends have to be terminated as explained in 6.6.
Additional you have to consider about existing pullup resistance. The tapping
of the master bus is connected to CH3 at Port 2. A termination is not necessary.

4-Draht Segment
Analyse
Vollduplex EIA-485 (Din
Messbus)

In this configuration all data sent by the slaves on both segments are gathered
at CH1 and CH2 and internally named as A. The data from the master, recei-
ved at CH3 are named B.
The assignment of the data A to a segment or a certain bus device (CH1 or
CH2) is done via an additional internally generated bus direction signal. This
signal can be evaluated to visualize and differing the sender, resp. the active
sending segment.

6.9 Signal assignment
The MSB-RS485 Analyzer has 10 data display channels for the visualization of
the recorded information.
Two data channels are used for the display of both bus data A and B which are
generated by the UARTs.
Further 8 logical channels are used to display the tri-state levels of the diffe-
rential signal inputs CH1 to CH4. They also display the bus activity and data

24

6.10. LIGHTMENT ELEMENTS LEDS

direction and the two digital auxiliary inputs. The assignment of the display
channels varies according to the selected connection mode (wiring).

Gray entries indicate signals which are recorded by the analyzer but are not
used in the selected connection mode. However they can be used for recor-
ding of additional signals like handshake lines.
The following table shows the available signal information. You do not have to
use this table for your data evaluation, the analyzer software automatically na-
mes the display channels depending on the selected wiring.

Display
channela

2-wire Tap 2-wire Seg 4-wire Tap 4-wire Seg

Data A
(Data A)

Data from
Bus at CH1

Data from
Bus segment
at CH1

Data from
Bus at CH1

Data from Bus
segments at
CH1 + CH2

Data B
(Data B)

Data from
Bus at CH2

Data from
Bus segment
at CH2

Data from
Bus at CH2

Data from
Masterbus at
CH3

Signal 1
(CH1)

Logic signal
at CH1

Logic signal
at CH1

Logic signal
at CH1

Logic signal
at CH1

Signal 2
(CH2)

Logic signal at
CH2

Logic signal
at CH2

Logic signal
at CH2

Logic signal
at CH2

Signal 3
(CH3)

Logic signal at
CH3

Logic signal
at CH3

Logic signal at
CH3

Logic signal
at CH3

Signal 4
(CH4)

Logic signal at
CH4

Logic signal
at CH4

Logic signal at
CH4

Logic signal
at CH4

Signal 5
(BDIR)

unused Data direction
CH1 ⇔ CH2

unused Data direction
CH1 ⇔ CH2

Signal 6
(BSIG))

unused Logic signal
CH1 + CH2

unused Logic signal
CH1 + CH2

Signal 7
(IO1)

IO1 IO1 IO1 IO1

Signal 8
(IO2)

IO2 IO2 IO2 IO2

aThe short notation as displayed in the control program in parenthesis

6.10 Lightment elements LEDs
The MSB-RS485 analyzer has four LEDs to display its operating status and the

Control LEDs
for State and record
control

status of the data recording. They are located between both 6-pin Phoenix
jacks (Port 1 and 2) and are marked with Red1, Red2, Green1 and Green2.
The red LEDs serve for the signaling of the recording status and the internal
buffer load while the green LEDs show the state of the connection and data
flow.

25

KAPITEL 6. CONNECTION OF THE ANALYZER

Green LEDs
The green LEDS show the bus states. LED1 is assigned to data channel A,
LED2 is assigned to data channel B.

1 LED is off:
Undefined bus state, drivers in tri state or lines are twisted (interchanged pola-
rity).

2 LED is on:
Active bus, correct connection.

3 LED flickers, mostly on:
Active bus with data transfer, correspondents to the normal EIA-422 operation.

4 LED flickers, only short pulses:
Active bus with data transfer, but wrong polarity or EIA-485 bus with rest (tri-
state) conditions. The latter is the normal condition for EIA-485.

Red LEDs
The red Leds serve as a display for the operating condition of the MSB-RS485.

1 Both LEDs permanently on:
The MSB-RS485 was not yet initialized by the PC. Data is not fed through (seg-
ment analysis).

2 Both LEDs blink alternatively:
The MSB-RS485 was initialized but is not yet active, that means no recording
was started.

3 Red 1 is on, Red 2 is off:
Recording is active, the PC logs all interface events.

4 Red 1 is on, Red 2 is blinking:
The loading of the internal data buffer is displayed. The filling degrees 1

4 , 1
2 , 3

4
are indicated by different length of pauses between the blinks. The more full
the memory the shorter the pauses.

5 Both LEDs blink at the same time:
The buffer memory is full and recording data gets lost. The duration of the data
loss is recorded.

26

7
Program start

Selection of the interesting events and the recording mode
(continous or Fifo-mode). Store or load recorded data. All these
functions are controlled through the main program.

The Firmware of the MSB-RS485 ist not installed in the device but has to be
loaded after powering up. This takes place only once. As long as the device is
powered from the USB connection the firmware is kept active.

The first start
loads the firmware into
the device

Therefore the loader appears as soon as you double click onto the MSB-RS485
desktop icon.
The firmware loader automatically detects if an analyzer is connected and if
the firmware is already loaded or has to be transferred. After the MSB-RS485
was identified and the firmware was successfully transferred (observable at the
progress bar in the lower part of the dialog window) the MSB-RS485 control pro-
gram starts automatically.
If there are more than one analyzer connected with your PC the Loader will
show you a selection list of all detected devices.

If no MSB-RS485 was found, even though it is connected to your
PC, read the hints for Trouble shooting (Windows D.1, Linux
E.1) in the appendix.
If you simply forgot to connect the MSB-RS485 to your PC, just
connect it now and click on the ’Search’ button to update the
list of the detected analyzers.
You also can work without the MSB-RS485, e.g. to eva-
luate recorded data or to work through the Tutorial. Be-
cause the program cannot detect the kind of analy-
zer (MSB-RS232 or MSB-RS485) in offline mode, you
have to choose the wanted type from the selection
list.

The MSB-RS485 software uses a multi process architecture. That means, that
the program does not run in a single window but starts special tools according
to the different tasks.
In view of this feature the start of a small control panel may seem poor. But the
software shall not confuse you with not necessary windows, multiline toolbars
and nested menus. Instead it shall offer you a set of easy to operate tools which
are appropriate for your application.

27

KAPITEL 7. PROGRAM START

The MSB-RS485 control program is your � cockpit� to supervise the analyzer.
With it you start a recording, save or load records or projects and open the
different analysis tools to examine the recorded data.

7.1 User Interface

A Recording control: Easy start, pause or stop a recording.

B Protocol Scanner: Automatically detecting of (unknown) baudrate and
protocol.

C Settings: All necessary settings for the recording available with one
click. No long winded navigation through complex menu items.

D Recording control: Clear display of the recorded data/events, settings,
record time and record state. More information with a right mouse click.

E Analysis tools: Start the proper view with it’s last settings.

7.2 Select kind of connection

Select bus wiring

The MSB-RS485 Analyzer has four differential inputs which are used as data
or signal loads, according to the selected wiring. Before starting the first recor-
ding you have to inform the program about how the analyzer is connected to
the EIA-422/485 bus. The only thing you have to do is to select the connection
mode in the setup menu. Also see section 7.5.

7.3 The first start
Imagine the control program as a kind of recorder. To record a data connection
you need at first not more than the communication parameters (baudrate, pro-
tocol). All further tools to display the transferred data or their physical level can
be optionally opened or closed without influencing the recording.
The MSB-RS485 analyzer contains a so called FLEXUART core, an specially de-
veloped decoder hardware, for the serial data transmission which allows not
only the measuring of the baudrate but also the detection of the used protocol.
The only thing you have to do is to click onto the button to open the protocol
scanner dialog.

Automatical protocol scan

Protocol Scanner
Automatical detection of
baudrate and protocol

A correct detection of the connection parameters implies an appropriate trans-
mission. It is sufficient to receive data at Port 1 or Port 2. A recording does not

28

7.4. STATUS DISPLAY

have to be started.
Start the automatic detection with a click onto the ’Start’ button of the scan dia-
log.
After starting the protocol detection the MSB-RS485 analyzer at first measures
the baud rate of the data at Port 1 or Port 2. In the further process the data
stream is analyzed and the correct number of data bits and parity is evaluated.
The complete process lasts only a few seconds and can be repeated at any ti-
me by clicking the start button. As soon as the paramters are correctly detected
you can adopt the found settings with the button ’Use scan’.

Manual Protocol setup
If you already know the baudrate and protocol you can directly set them in the
settings dialog. The MSB-RS485 software memorizes these settings so that you
do not have to enter them any more.
All relevant parameters for the recording can be reached with one click onto
the button. The most important settings are immediately shown. Settings
for advanced users or more specific applications can be reached in the page
selection of the dialog and are discussed in chapter 7.5.

Start/stop a recording

Record Pause Stop
Recording control

As soon as you determined the communication parameters one click onto the
record key starts the recording . The record key starts to glow red and the acti-
ve symbol in the display starts to turn.
You can halt the recording at any time by clicking on the Pause button. The
recording of occuring events is discontinued until you continue the recording by
another click on the Pause button.
If you want to end the recording press the Stop button. The recording is not
deleted but finally stopped. If you want to start a new recording the program
reminds you to first save the recorded data of the last session.
The MSB-RS485 analyzer software allows to examine the data even while re-
cording. In this respect you will stop the recording not before you want to start
a different one or to save it for a later examination.

Test the software without analyser
You can test the program even without a connected analyzer. Simply load
a sample recording with Ctrl+O from the example folder in the installation
directory.

7.4 Status display
The central part of the control program is the display of the current recording.
To indicate all information clearly arranged the display can be operated in three
different modes. The selection is simply made by a right mouse click onto the
display.

Toggle the display
with a right mouse click

In addition to the connection data also the available recording capacity is dis-
played. The necessary disc capacity is depending on the data traffic and the
events, selected for recording. An estimation of the space consumption shows
the marker (dot) on the horizontal dividing rule. It indicates the empty space
(right hand of the marker) in relation to the total available space.

29

KAPITEL 7. PROGRAM START

The default directory is the usual Windows or Linux temporary directory. You
can change it by calling the program call with an addition parameter (see also
section 7.16 Additional program arguments).
The speed of the moving marker is depending on the quantity of the occuring
(and selected) events as well as on the size of the empty space in the used
temporary directory.

Display I
It contains in the lower part the set connection parameters (Set: baud rate, da-
ta length, parity, stop bits), the measured baudrate (Mete:) and the for logging
activated input channels resp. signals.
Additionally the quantity of the transmitted data bytes are displayed depending
on the direction, bus or bus segment.
The time display corresponds to the timt point of the last occurred event, rela-
tive to the start of the recording.

Display II
The second display informs you about the total sum of transmitted data bytes
and about the quantity of the remaining events as level changes and alternati-
ons of the bus direction a.s.o.
In this display mode the time indication is not related to the last occurred event.
The time is the running recording time, independent of any events.

Display III
The third display alternative serves as a control display for the connection of
the Analyser to the controlling PC.
The analyzer MSB-RS485 is controlled and supplied directly through the USB
connection. The USB connection is done via a virtual COM port and is shown
as a normal COM connection under Windows. For Linux it is typically /dev/ttyUSBx.

The fields Gaps and Fifo indicated if the analyser has recorded or sent more
data than the PC could handle (as a result of a too slow connection). Normally
both values should be zero. Other values indicate that either the internal buffer
of the analyser (Gaps) resp. the Fifo of the serial ports (UART) could not handle
the data rate (overflow, lost data). In this case you should reduce the number

30

7.5. CONFIG A RECORDING

of recorded events.
All signal and and data lines can be individually enabled and disabled for log-
ging. Inactive are shown as lines.
In the examples above the level changes of the input channels CH3 and CH4
are not logged.

7.5 Config a recording
In the program defaults all signals are activated and prenamed, the connection
parameters are set to 8N1, 115200Baud.
These defaults probably do not correspond to the connection which shall be
monitored. Before you start a recording these parameters have to be changed
according to the connection settings.
You get access to these parameters through Settings→Configure Control Pro-
gram... or by click onto the set symbol on the left side of the display.
Because some settings directly influence the logging they are deactivated whi-
le a logging session is running. The respective setup menus are displayed in
gray.
The setup dialog is divided into the following sections:

Connection
Bus Wiring
Signals
Record
Auto Save
General

The recording of the bus line(s) takes place as data bytes and additional as the
recording of the logical signal levels.

Connection
These settings concern the analyzed connection, not the connection between
the analyser and the PC! They are mainly important if you want to record the
transmitted data bytes.
This includes the baudrate and also the numbers of the databits and the parity
setting. The count of stopbits doesn’t matter. The analyser takes care about the
stopbits automatically.
If you are unsure about the connection parameters just let the integrated pro-
tocol scanner detecting the right settings for you. . Connection setup

baudrate, word length,
parityAdditional to the standard baudrates, the MSB-RS485 analyser also supports

any rate in a wide range of 1 Baud to 1 MBaud.
To use an more special rate like 123456, just input it in the baudrate field. Or
select a standard baudrate by click on the button. Valid entries are 1 Baud
to 1 MBaud.

Besides the common data lengths the MSB-Analyzer also allows you the record
9 bit data transmissions, which are often used for address decoding or to mark
a telegram start.

31

KAPITEL 7. PROGRAM START

Please note that a 9 bit data length excludes any other parity except for none.

By default, the display of the control program shows the measured baudrate
were alternatively the detected data at CH1 or CH2 are used for the evaluation.

Bus wiring
It is decisive for the signal assignment how the MSB-RS485 analyzer is connec-
ted to the examined bus. Since the connection can not be automatically deter-
mined you have to inform the analyzer about the chosen wiring.
Depending on the connection setting only a part of the differential inputs are

Choose a Bus wiring

used. The unused inputs and the digital auxiliary inputs can be used freely in
your application. Not available signals are marked with ’disabled’.
The setup menu shows a respective graphic and a table for the signal assi-
gnments. The signal names are automatically assigned. In the setup menu of
the signal names (32) you can change this behavior and assign own names.
The signal assignment is separated into:

2 Data channels
These channels contain the decoded data of both UARTs. 9 bit data are sup-
ported and displayed as well as occurred transmission errors like parity and
framing.
Depending on the selected wiring a data channel can also contain the data of
several differential inputs. In this case the inputs are explicitly listed with a ’+’
For example CH1+CH2.
8 Logical signal channels
All differential inputs CH1 to CH4 are additionally displayed as a ’plain’ logic
signal independent of their data decoding. The four inputs are directly shown
in the four signal channels 1 to 4.
The signal channels 5 and 6 have a special status. For the selected segment
analysis they display additional internally generated logic signals. These are
the bus-direction between CH1↔ CH2 (signal channel 5) and the combination
of the logic signals from both inputs CH1 and CH2 (Signal channel 6).
The signal channels 7 and 8 are assigned to the two auxiliary channe
Digital auxiliary inputs/outputs
As the name implies both channels can be individually operated as input or out-
put. That allows the recording of additional signals or the output of the current
bus state (bus validity, activity or direction). Reasonable if you need a signal to
trigger external measuring equipment.
By default both terminals are set to open inputs with pull down resistor. A de-
tailed description of the possible settings can be found in chapter 6.3.

Signals
You can select and rename each of the sampled input channels or signals
separately. The latter one can be done even with a running recording.

Signal und Name
settings for the record

The chosen bus connection mode specifies reasonable signal names (default
bus connection).
It is up to you which one you choose or if you define own names as ’User
defined’. In this case set the signal naming to ’User defined’ and enter the new

32

7.5. CONFIG A RECORDING

names for each signal.
The names Sig1 to Sig8 are used as place holder. Every name can consist of
a maximum of 7 characters, allowed are: all digits and letters, the underscore,
colon, and full stop.
The modified signal names are automatically adopted by the control program
and all analysis windows.

You can individually enable or disable the line events (signal alternations) to be
monitored by the Analyser by setting or removing the checkmark beside the re-
lating signal. As default all level changes detected on the input channels CH1
to CH4, both auxiliary digital inputs and the decoded results of the two UARTs
are switched on.
Please note, that the selected signal names are shown. If you have chosen
’User defined’ but haven’t entered names then here appear - no names (blank)!

The decoding of data by the UARTs is done independently of the level change
recording. If you need the data only but not the logical signal you can deacti-
vate the recording of the channels CH1 to CH4 because each level change is
stored as an additional event and strikingly increases the quantity of the recor-
ded data.

Please keep in mind that the more unnecessary events you admit the more
(needless?) data is stored onto your hard disk.

Record mode
For troubleshooting of serial connections you often get the problem that you do
not know when the error occurs but you need a sufficient big quantity of data
to get a statement about potential reasons for the fault.

Choose a record mode
synchroneous, continous
or loop recording

Of course you can run the logging up to the occurence of the fault. But this can
cause a rapidly increasing amount of data. With 115200 Baud and recording of
all level changes this can mean 2MBytes data per second!
Therefore the analyzer supports 2 modes of logging:

1 Continuous recording:
In the continous mode all occuring events are stored until the recording is stop-
ped. This mode is appropriate if you want to watch and analyze the data stream
already while recording.

2 Time loop with Fifo mode:
In the Fifo Mode a certain amount of data of the last (before stop of recording)
occured events is stored. The amount can be defined by setting the maximum
size of the recorded events (1000...1000000 events) or by setting a time limit
(10...600 seconds).
This behaviour quasi correspondends to an analogue endless tape (used with

33

KAPITEL 7. PROGRAM START

observation cameras). With this tape always the last time, defined by the tape
length, is recorded. In this case you can define the ’tape length’ in a given
range.

Please note that in the Fifo mode no analysis tool can be used while recording.
The reason is that the tools need a random access to the recorded data which
is not possible in the Fifo mode. In this mode data is always overwritten from
the beginning of the buffers. As the Fifo mode is normally used for recording
with later analysis this behaviour is not necessarily a disadvantage.
As soon as you stop the recording all recorded data are normalized. That
means that they are sorted according to their time stamps and can then be
analyzed as usual.

Time synchron recording
In the program defaults each MSB-Analyzer works autonomously unless it recei-
ved so called synchron impules on its MSB-Link jack from a connected ’Master’.
If you like to record two independent connections at the same time, for instance
a RS232 and RS485 port of a level converter, you have to choose one of the
analysers as the record ’Master’.
You can see the current analyser status in the display. A ’Master’ above the
running record time indicates that the device works as the master, a ’Slave’
means that the analyser is linked as the slave. In the latter case all settings are
disabled since there is only one Master allowed.

You can use the ’Flash connected analyser’ if you are in doubt which one you
are currently setting.

Adapt the record date and time
Sometimes you want to adjust the date and start time of an analysing record
perhaps if you examinate the record in another time zone or need to adapt it to
the date and time of a second comparing record.
To do so, just click the ’Adapt now’ button and enter the new date and start
time.
Close the dialog with ’Ok’. The Views automatically refresh their display.
You can always switch back to the original record date in the same dialog. The
new date/time doesn’t change the original record. The software only uses the
new value as an offset added to the initial record time and date.

34

7.6. THE ANALYSIS TOOLS

Save new record date
The modification of the record date and time doesn’t alter the record file. The
new date/time is only temporary for the current session. If you want to store
the modifications permanently you have to save the record.

Autosave
The amount of data can rapidly increase during a record. Therefore the pro-
gram only stores the data if the user explicitly want to save it in a file.

Save a record
automatically after each
stop

But there are conditions which require the storage of the record. For instance:
If you like to make sequent records for a later analysis or if an analyser in slave
mode isn’t accessable.
For both cases you can preset an automatical storage of the record. The sto-
rage always takes place:

1 After stop of a synchronous record
2 After each stop of a record

The place and folder of the saved files are freely selectable. The program crea-
tes a unique file name according to the serial number and the record start date-
time which prevents to overwrite existing files. But you can add an additional
prefix for a better identification or classification.

General
This page is intended for general settings. Among other things you can switch

Common settings
like warnings, taskbar
behaviour and external
views synchronisation

of the security question for not yet stored data and/or suppress the display of
single views in the task bar or the task changer. The latter is possible for Win-
dows only. Linux desktops usually group the program views within one taskbar
entry.

As a special feature the software offers you to synchronize the Views of two
running MSB-Analyzer programs with each other. This comes in handy if you like
to compare and analyse two synchronous records. All views of boths records
interact as it used to be in a single recording.
For this case you have to allow the external synchronisation first.

7.6 The analysis tools
The control program solely makes the collected data available. The actual Dis-
play and analysis of the data is done by analysis tools - separate program
modules to visualize the data at different time points and in different display
modes.
You can open any number of analysis windows by either using the below men-
tioned short commands or by clicking on one of the quick start buttons at the
right side of the display.

35

KAPITEL 7. PROGRAM START

A (P.49) Virtual Ledtester: Das virtual counterpart of a real ledtester.

B (P.51) Data View: Data dump of the transmitted data with special
search features.

C (P.65) Event View: All line changes in a clear look, search for line
modifications.

D (P.77) Protocol View: Display any protocol with your own definition.

E (P.145) Signal View: Digital Scope like view of all lines.

7.7 Save a recording
Independend of the status of the recording (aktiv, paused or stoped) you can
save the data, collected so far, in a file.
Press the keys Ctrl+S or select in the file menu the entry Save→Save recor-
ding. In the opening dialog you can enter a new file name (The extention .ms-
blog is automaically added) or you can overwrite an already existing recording.
This file contains all information about the selected and recorded events and
data bytes. Settings of the control program and opened analysis windows are
separately stored as a project file.

Every time you save a recording the choosen file is stored in the list of last
opened recording files and can be loaded at any time. More information can be
found in chapter ’Last opened Recordings and Projects’.

Save a special section
To save any section of the recorded data use the event monitor and mark the
interesting range. To save the tranmitted data bytes only or a part of it use the
data monitor and mark the interesting range.

7.8 Save a session as a project
A session contains the current state of the opened analyser program. This
includes all current settings and views which represent the program on the
screen. That means that beside the connection parameters also position, size
and content of all opened analysis tools and all the marked regions are combi-
ned into the session.
You can save the session at any time by pressing: Ctrl+Shift+S or by selecting
Save→Save project in the file menu.
When a session is saved also the data, recorded until this time, are saved in a
separate file with the same project name, but with a different extention.

Separate files for project and record
Project files always have the extention *.msbprj, the recorded data files the
extention *.msblog.

36

7.9. OPEN AN EARLIER RECORDING

Accordingly a record data file is also loaded (if available) when the project file
is opened.
With it you have all informations you need to resume an analysis of recorded
data at exactly that point where you paused or finished the examination before.
Saved projects are also managed in the list of last opened project files, see
’Last opened Recordings and Projects’.
Each session can saved as a independent project template.
For this purpose clear all recorded data by New→New record in the file menu
or press Ctrl+N. Afterwards save the session under a name of your choice.

7.9 Open an earlier recording
A devision between project files and record files was intentionally made. The
reason is that you can load an earlier data recording into your current project
without loosing your current settings.
Press Ctrl+O or click on Open→Open Record in the file menu to load the data
into your current session. Please note that tThis can be done only if no recor-
ding is running and that your recorded data are overwritten.

7.10 Open an earlier session (project)
Press Ctrl+Shift+O or click on Open→Open project in the file menu to open a
saved session.
The control program loads the associated recording, places the analysis tools
and makes the corresponding settings. In short it restores the program state as
it was at the moment of saving the session.

7.11 Last opened recordings and projects
As mentioned earlier all saved recordings and sessions (Projects) are listed in
two separate lists. You get quick access to the files you used last.
The lists contain the names in sequential order so that the newest files are on
top. All files are listed with full path to clearly identify them.

Click on ’Last opened Recordings’ in the file menu and
select the appropriate one. This is the same like open
a recording with the open dialog but is much faster
because you do not have to move through the different
menus and directory trees.
If the choosen file is no more available, i.e. because
you deleted it, you are asked by the program if the file
shall be removed from the list. If the file really does no
longer exist you can answer with ’yes’. But if the file is
on a data medium that is only temporarily unavailable
you can answer with ’no’ and the entry is kept.

7.12 Drag and drop
You can load any record or project file by simply drag and drop it into the ap-
plication. Just drag the wanted file from your file browser or desktop into the
control program.

37

KAPITEL 7. PROGRAM START

This will replace the current session with the data of the new dragged file. In
case of a project file also all stored session settings are restored including all
Views.
Please note that drag and drop isn’t possible during an active recording.

7.13 Connecting multiple analysers
You can use multiple analyzer at one PC at the same. Furthermore it is possible
to compare the data and events of one analyzer to the data of another one or
to data recorded earlier. Every control program acts independent to the others.
To explicitly connect the control program to a certain MSB-RS485 you have to
start the program with declaration of the serial number of the MSB-RS485. The
serial number is attached to the bottom of the instrument and is displayed
in each window frame of the running program. It has the following format:
MSB#####.
If you do not add the serial number the program connects to the first instrument
it finds on the USB. This is the default behaviour.
Depending on the PC and the sequence of search the analyzer found in each
case may vary.
To select a certain analyzer by double click on the start icon proceed as follows:

1 Right click onto the MSB-RS485 Icon and select the entry Copy.
2 Right click onto an empty space of your desktop and select Insert to add a copy

of the start icon.
3 Rename the Copy to e.g. MSB##### (##### is the serial number).
4 Right click on the renamed icon and select the entry Properties.
5 Add in the field Target: to the call of the control program the parameter -nMSB#####.

I.e. something like this:
C:\Programme\msb-4.6.0\msb_serv.exe -nMSB#####
resp. for Linux: /home/USER/msb-4.6.0msb_serv -nMSB######

6 Click on OK to apply the addition.

Take care that the added serial number of your analyzer is the same as the
one on the instrument. Otherwise the analyzer will not be found and an error
message will be issued.
Following this procedure you can define an own start icon for each analyzer.

7.14 Automatical start after computer boot
The analyzer can be started automatically and set into the logging mode after
booting of the computer. That means in detail:

1 As soon as the windows boot process is finished an analyzer is searched and
load with the firmware.

2 Subsequently the analyzer is set to the recording state and starts logging the
connection. For this application the last connection settings are used.

3 Every new recording is stored in an own logging file. Its name is combined from
the serial number of the analyzer and the start date and time of the recording.
For example: MSB00237-20120702093107.msblog means a record taken
on 2th July 2012 at 09:31:07.

4 The analyzer software closes the record file as soon as the computer is shut
down.

38

7.15. SHORT COMMANDS

Activate the autostart feature
Windows automatically starts all programs, which are located in the autostart
folder. An additional parameter for the analyzer program is necessary to start
logging after searching and loading the analyzer. At the same time this parame-
ter takes care, that the logging and its file is correctly closed before the system
is shut down.
Open the autostart folder of the active user with the file explorer. Commonly it
is the folder:

C:\Documents and Settings\Username\Start Menu\Programs\Startup

Copy the MSB-RS485 start icon from your desktop into the autostart folder (co-
py, not move). Then right click the new icon in the autostart folder and select
Properties.
Add to the target entry the parameter -a, i.e.:

C:\Program Files\msb-4.6.0\msb_serv.exe -a

Click on Apply and OK to save the change. When the computer is rebootet the
analyzer program is executed and a new recording is performed.
Please note, that the last events of the recording are possibly not stored when
the computer is incorrectly switched off (power off without shut down com-
mand).

Autostart with high data increase
Please not! The time to store the data depends on the amount of data and
can take several minutes with very large volumens of data.
An alternative would be to use the command line tools from chapter 19 and
put an according script or batch file in the autostart folder.

7.15 Short commands

Short commands
of the most important
functions

Action Short command

Online help for the control program F1

New recording Ctrl + N

New project Ctrl + Shift + N

Open recording Ctrl + O

Open procekt Ctrl + Shift + O

Save recording as... Ctrl + S

Save project as... Ctrl + Shift + S

Start recording R

Pause recording P

39

KAPITEL 7. PROGRAM START

Stop recording S

Open a virtual Ledtester Ctrl + Alt + L

Open a Data View Ctrl + Alt + D

Open a Event View Ctrl + Alt + E

Open a Protocl View Ctrl + Alt + P

Open s Signal View Ctrl + Alt + S

Save settings and close program Alt + F4

7.16 Additional program arguments
The MSB control program can be called with a series of additional parameters
to set explicite defaults like language, offline mode or the typ of the connected
analyser.
In most cases the default setting (automatical search an initializing of the ana-
lyzer) is sufficient. If the analyzer is not found (this can happen if Bluetooth
converters are used because they reserve some COM ports) or if you want to
set another directory for storing your temporary logging data you can change
this with the following program parameter.
You can add additional program arguments to your desktop start icon like des-
cribed in chapter 7.13.

Parameter Description

-a Starts the analyzer in autostart mode. That means that after
loading the firmware into the connected analyzer the device
is immediately switched into logging mode and all recording
files have serial numbered names.

-D directory Set the working directory.

-e Starts the control program with the default settings. All sto-
red program and session settings will be ignored.

--force Forces the program to use the given port name and serial
number in cases the automatical detection of the analyzer
fails.
Please note! This parameter only works with a given port
name and serial number, i.e.
msb_serv -pCOM12 -nMSB01234 --force

-i Forces the loading of the firmware even when the MSB-
RS485 is already loaded.

-j Forces the program windows to appear on the current
screen. Use this parameter, if you want to open a project
file, which was saved on a workstation with more than one
monitor. (And therefor the windows doesn’t appear, because
they are saved on a non visible screen).

40

7.17. SPECIAL PROGRAM PARAMETERS

-l language Select the language. Values for language are:
0: System default, depending on your operating system, 1:
english, 2: german
Syntax: msb_serv -l1

-n serno Select a analyzer by it’s serial number serno. Important, if
you are connecting more than one analyzer at the same
time.
Syntax: msb_serv -n MSB12345

-o type Starts the control program offline using the given analyzer
type (and suppress the selection dialog). A connected ana-
lyser is not searched for. Recordings are not possible but
saved data can be examined. Syntax: msb_serv -o typ
Valid types are: MSB-RS232 or MSB-RS485, for instance:
msb_serv -o MSB-RS232

-p port Virtual com port to be used. For example COM1 (Windows)
or /dev/ttyUSB0 (Linux).
Please note! You have to pass the serial number of the
connected analyzer with parameter -n (see above) otherwi-
se the program will use the default MSB00000 for setting
storage.
Syntax: msb_serv -p COM1 -n MSB12345 (Windows)
respectively msb_serv -p /dev/ttyUSB0 -n MSB12345
(Linux)

-r number Reduces the firmware transfer speed by the given number.
Default is 0 (full speed), maximum value 100.

-T directory Presetting of the directory where the temporary logging
data is stored. By default this is
C:\Documents and Settings\Username\Local Settings\Temp

(Windows) respectively /tmp (Linux).

--verbose Stores a report file (AnalyzerScan.txt) about the analyzer
detection process on the desktop. Send this file to
support@iftools.com when the software fails to recognize
the device correctly.

7.17 Special program parameters
Beside the ’normal’ program arguments the control program also offers a few
parameters to affect the program in some special cases.
The relating parameters are listed below and are not stored after the program
end. That is you have to give it to the program each time you start it again.

Parameter Description

--ignore-unsaved-data Disables the warning about recorded but not saved da-
ta. This may useful if you running some tests without a
need to store the data always afterwards.

41

mailto:support@iftools.com?subject=Analyzer detection

KAPITEL 7. PROGRAM START

--socket=portnumber Specifies another socket port for the communication
with the SwitchEditor. The default ports are in the ran-
ge 50000...50100, but sometimes other applications
have already reserved these. A validate port number
starts with 1024, the max. number is 65535.
A zero port number disables the socket completely, the
use of the SwitchOption isn’t possible then.

42

8
The MultiView design

Already while recording the data can be displayed at different
points in time in different formats with different time resolution.
We call this concept MultiView, the actors Views or Analysis Tools.

The MSB-RS485 analyzer software uses a multi-process architecture to gua-
rantee a high maximum in stability and scalability. The Recording of data from
the via USB connected analyzer and their display and evaluation are done by
separated and independent programs and processes which communicate with
each other. That has a lot of advantages:

A recording can be examined at the same time at different segments of the
data stream and in different representations with different analysis tools.
Visualization in real time already while recording.
The number of views only depends on the computing and system power (sca-
lability).
Application errors in the displaying programs do not have effect on the recor-
ding.

By the capability of the single programs (Views) to communicate with each other
a number of new possibilities to make the analysis of EIA-422/485 connections
easy are opened.
So different views of the recorded data can be linked. What does that mean?
Every display program can be selected as master. All other data views automa-
tically follow this master view and synchronize their displays to it. For instance:
The graph of the physical data signal (scope view) follows the cursor of the
data monitor and vice versa.
The search for a defined level change or a specific data delay fades in the
respective data sequence. A click onto the recorded parity error shows the re-
spective signal, a.s.o

8.1 Synchronization
This way of communicating is called synchronization, the handling is identical
for all Views.
Each display program may alternately follow the current recording and display
the last occurred events (data byte or level change). Or it can lock the current
view to compare it with another sector or recording.

43

KAPITEL 8. THE MULTIVIEW DESIGN

If the display program is switched to interlocked operation it reacts on all syn-
chronizing requests which are triggered from other Views and fades in the the
respective section of the recorded data in its own display mode. Thereby the
program, which is just operated by the user, is automatically seen as the mas-
ter.
With this simple concept any views can be synchronized, completely indepen-
dent of the running recording.

Synchronize the
displays
individual for each View

Symbol Action Description

Follow
(autoscroll)

The display follows the recording and always fades
in the last recorded data.

Locked If locked the content of the View is frozen, e.g. to
compare it with other views from other parts of the
recording.

Linked If linked the View is synchronized with the content of
the master View.

Follow (autoscroll)
If your interest is in the last events of the examined data connection, for instan-
ce if you like to see the current data flow or you want to control the current bus
direction and/or bus validation you have to activate the Follow button in the tool
bar.
The analysis window is switched to the autoscroll mode and shifted its window
content always so that the last event is visible.
Please note that in this autoscroll mode no synchronization with other analysis
windows is performed. An active autoscroll is limited to the respective window
and has no effect on other analysis windows.

Locked (fixed)
In case the opened windows shall represent different data sections a synchro-
nizing or following of the display is not wanted. You just want to intendedly
watch the different data sections. An update by synchronization would delete
the window content. Therefore set the display mode to locked.

Linked
As soon as you activate this button the content of the window follows the cursor
movements of the active input window. That means it synchronizes with the
analysis window which currently has the input focus and is operated by you
(master window).
If more than one analysis window is opened at the same time automatically the
window which has the input focus is the master. All cursor movements or shifts
are also transferred to all those windows, which are set to the linked mode.

8.2 Views (displays)
Views are autonomous programs which link into a current running recording and
visualize data in a certain format. The MSB-RS485 analyzer software follows the
concept to offer a specially optimized display tool for each kind of examination.

44

8.2. VIEWS (DISPLAYS)

Each view provides functions which represents its kind of data interpretation.
Thereby the handling stays easy and clear, multiline toolbars and overload me-
nus are avoided.
You are searching in a data View for data sequences, while you watch out for
level changes in the event monitor? Each View provides just the search dialog
you would assume to find there.
Simply close data views which you do not need or do not open them. Since
they all are independent programs you can place them on your desktop as you
like and vary their size and position.
The session management saves all settings. Views are automatically shown
with their last adjustments and can be copied with a single click.
The following Views are available:

Virtual Ledtester
The current line level displaying LED tester is a standard tool for checking
RS232 communications. We modified its virtual EIA-232 counterpart for the
operation on EIA-422/485 connections. In this way a fast check of the bus
states (inactive /active), data direction, handshake conditions and digital au-
xiliary inputs is possible.

DataView - Data Monitor
The data monitor represents the transferred data as a series of data bytes in
different formats (ASCII, decimal or hexadecimal). As a special feature the data
monitor allows the search for defined pattern by the use of regular expressions,
which exceeds the normal search for words or sequences by far. In addition you
can search for pauses between sent and received data and in general between
any data.
With the help of the integrated script language the displayed data can be com-
puted and colored in any way. Protocols can be visualized, checksums tested
in real time and data transformed into other forms.

EventView - Event Monitor
Every line change is an event and is logged. Be it the change of a control line
or the change of a single bit of a transferred data byte. The event monitor lists
them all and allows a simple navigating between all or certain event types, the
measuring of times between events and the search for defined conditions or
condition changes. E.g. Changing of the bus state (tri-state) or of a handshake
signal during a data sequence.

ProtocolView - Protocol Monitor
The protocol view enables you to display the recorded data according to special
rules.
Define your own protocol so that every data sequence is displayed in an own
line. Also color any section of the sequence to make them more readable.

SignalView - Signal Monitor
The MSB-RS485 analyzer samples the logical state of all signals with a maxi-
mum of 16 MHz. The result can be watched in the signal monitor. Analogous
to a digital scope you can move to any section and examine in different resolu-
tions.

45

KAPITEL 8. THE MULTIVIEW DESIGN

By synchronizing to other views you immediately see the basic signal behavior
of every data byte and therewith the real world of your EIA-422/485 connection.

Regions
Regions are definable sections of the recording. They can be compared with
bookmarks and define time ranges in the recording file. Regions can be named,
they also can send out synchronization requests to other views.
A click onto the start or end of the region is sufficient to let them be faded in into
other windows. In this way it is easy to compare recorded sectors in different
representations.

8.3 Copy Views

Copy View
to compare its content
with another sector

The Clone symbol in the toolbar starts an exact copy of the current analysis
window with all its features, settings and position within the recorded data.
By this you can fix a current view while you go on working with the copy (or the
original). This makes sense when you want to compare various data regions.

8.4 Saving the state of the Views

Save settings
and close the window

To make the working with views easy the current settings of a view like size and
position are saved as default when the window is closed by click onto the
symbol. The view is restored when you reopen the view. That avoids that you
have to enter all settings when you start a new analysis tool.

In case you do not want to save the settings, e.g. because you experimented
with the settings and want to close it without ’consequences’, simply click onto
the close symbol in the window frame instead of the quit symbol in the toolbar.

Discard settings
and close window

The saved defaults stay active even after the end of a session. They are part
of the session settings and are also regarded in project files.
Project files contain a complete description of the current session. They are the
subject of the following chapter.

46

9
Session management

A program session contains a variety of opened windows in
different views. The session management cares that at program
start you will find everything again like you left when closing the
program.
The session management takes care for the correct storing of all relevant set-
tings for a session. All recording parameters, window properties (position, size)
and content (colors, text size, formats) of the open Views are saved as configu-
ration when closing the window and restored at next start.
The storage of the current program settings are completely transparent. You do
not have to trigger this process, but you also can save the complete session
including the recorded data as a project. In this case you can proceed with the
examination of the data at a later time simply by opening the project file.

9.1 Projects
Projects are used for saving of your current work (analysis) with the MSB-RS485
software, that means the recorded data is also stored. Therefore a project al-
ways consists of two files:

1 Project file: Project file: Describes the condition and properties of all open
Views. Project files do have the extension *.msbprj.

2 Record file: Record file: Contains the actual data and all information, relevant
for the data recording which are: data rate, protocol, defined regions, which
event types are recorded and time of their recording. Record files do have the
extension *.msblog.

Why this splitting into two files?
Stored sessions (projects) corresponds to the user request to configure the
program individually for his own needs. These are mostly independent of the
recorded data. Perhaps he wants to adapt the placement and display of the
views to the screen resolution or use other fonts than the default ones.
On the other hand record files contain information which are independent of
the session settings. These information about the protocol, time stamps, regi-
ons, used signal names and (de)activated event types. Furthermore recordings
should be analyzed by different persons with different ideas about the configu-
ration.

By this splitting some advantages are added:

47

KAPITEL 9. SESSION MANAGEMENT

The storage of the recording is done independent of the current session.
A recording can be loaded into an existing session without disturbing it.
Other users can examine the data with their individual configuration.
Project files can be purposefully defined for certain analysis and forwarded.

By the clear separation between project and record file you always can examine
a recording with your own program settings or you can use another predefined
program configuration for the analysis.
Project and record files have their own icon to make the distinction easier. They
are linked to the MSB-RS485 software while installation and can be opened by
a double click

9.2 Store and reload projects

A project file
stores all session settings
and has the extension
*.msbprj

Storing and reloading of projects are executed from the control program. The
seperation into a session and recording file is done automatically like described
before.
Likewise a recording file (if existing) is loaded when you open a project.
The same applies when you start the MSB-RS485 software with double-click on-
to a project file *.msbprj from the Windows file explorer. Opening of a project
file automatically loads the associated recording file msblog too.
Please note that certain settings like the baudrate are stored as default in the
session file as well as in the recording file as mandatory part.

A record file
contains the data and
also all transmission
parameters. It has the
extension *.msblog

As soon as a recording is loaded by the software this information is fetched
from the recording file and (over)written into the session configuration. This
applies for the protocol settings (baudrate, parity, stopbit) and for definition of
the signal names and activated events. These settings are inseparably linked
to the recorded data.

Create a pure project file without data recording
To save a current session as configuration for later examinations you have to
save it as project without data or you can delete the record file to get the pure
project file.

9.3 Automatic storing of a session
This process is done transparently in the background as soon as you close the
current session by closing of the control program. The MSB-RS485 software sto-
res all necessary settings in a configuration file with the name MSB#####.msbprj
in your home directory whereat ##### is the serial number of your MSB devi-
ce. Under Microsoft Windows this is:

C:\Documents and settings\User name\MSB######.msbprj

Under Linux:

/home/User name/MSB#####.msbprj

If you did not connect an analyzer the settings are stored in the file MSB00000.msbprj.

48

10
The virtual Ledtester

The the current line level indicating LED tine testers are standard
tools for checking the levels at the RS232 lines. The for
EIA-422/485 connections adapted virtual counterpart allows a
fast overview about the bus state, bus data direction and bus
activity.

The virtual LED tester is modeled on a customary serial line state tester and
shows the state of all differential inputs CH1 to CH4 and of both auxiliary in-
puts Additionally the bus signal and the bus direction between CH1 and Ch2
(segment analysis) is visualized.

For better clarity the LED tester (or line monitor) has two separate diode co-
lumns for every active line state, consisting of red and green LEDs in each
case. The red LEDs on the right side signal a positive line level, the green
LEDs on the left side a negative level.

In the range from ±0.7V both LEDs are off. This correspondends to the inactive
Bus/line condition. The trigger level of the EIA-485 receivers is about ±200mV.
By the higher level of the MSB-RS485 analyzer inactive bus levels are still re-
cognized, even if the bus rest level is drawn by pull up resistors to more than
±200mV.

By default the current state is displayed independent o a running recording.
This corresponds to the synchronization to the last recorded event. Therefore
the scroll button in the toolbar is activated. So the monitor is comparable to a
real tester.
You also can use the monitor for watching the status of earlier data in the re-

49

KAPITEL 10. THE VIRTUAL LEDTESTER

corded data stream.
Click the ’Sync’ symbol in the toolbar. With this the line state monitor is syn-
chronized with the active display window, e.g. a data monitor. Or you freeze the
current state by clicking the ’Lock’ Button.

The active levels of a EIA-422/485 connection are alternatively described with
logical 0/1 as space/mark or as a physical positive or negative voltage. Most
time this is more confusing than helpful. To make it a bit easier the Ledtester
fades in additional information about the line conditions.
Simply move the cursor over the Tester to make this information visible.

Level Description

1M A logical 1, Mark refers to a negativ voltage level (–0.7V...-7V) on
the difference signal input (green LED with a minus Symbol)

0S A logical 0, space refers to a positive voltage level (+0.7V...+12V)
on the difference signal input (red LED with a plus Symbol)

As all other Views the virtual Ledtester also updates the signal names as soon
as these are changed in the control program. This is also true when you change
the bus wiring.

10.1 The toolbar
The toolbar offers a quick access to the most needed functions.

A End: Saves all settings and closes the window.

B Display mode: According to the mode the ledtester either shows always
the current (last recorded) line states or locked or actualizes its content
synchronous to the other windows.

50

11
The Data View

You are searching for certain data sequences? For
communication breaks of a certain length? The data monitor
shows the data in their real time sequence, alternatively in
decimal, hexadecimal or ASCII and additionally contains parity,
framing or break information. Regular expressions allow the
search for any data pattern and much more...

The data view displays all transmitted and by the MSB-RS485 recorded data
bytes in their sequence. Changes in the control lines are fade out, so that only
the pure user data is shown.
The data can be displayed separated for each data channel A/B (the assi-
gnment input signal / Data channel depends on the connection mode) or to-
gether (see signal selection). The latter makes sense if the reaction on sent
data shall be inspected.
If you want to examine the data separate for data channel A and B without mi-
xing them simply start two data monitors.
You also can watch different sections of the same data stream. You can open
as many windows as you need. The PC-Resources are the only limitation.

11.1 User Interface
The data monitor shows the transmitted data bytes like a hex editor. Default
are 8 characters or bytes1 per line, displayed in hexadecimal notation and in
the ASCII representation. Every line starts with the current address or position
as the offset from the beginning of the data stream. Non printable bytes e.g.
the carriage return sign are displayed as a dot.
Use the arrow keys to move the Cursor while additional information is displayed
in the Statusline like the exact time, position and quantity in relation to the com-
plete data stream.
In case of a communication error (framing or parity) the data monitor fades in

the error into the associated data byte. This is also done for the break conditi-
on, which could be misinterpreted in the data stream as a null byte.

1Strictly spoken 9 bit values because the MSB-RS485 analyzer supports transmissions with 9
bit data length.

51

KAPITEL 11. THE DATA VIEW

With the integrated Lua script interpreter you can calculate the displayed data
in any form, convert a sequence of data in another format and output the result
in the watch window (see section 11.6.

Integrated Lua

Even more - you can colorize and mark the displayed data in real time control-
led by a Lua script. For instance if you like to emphasize a curtain protocol or
some special sequences of interest. And if you wish to validate an additional
checksum too - no problem. A little Lua script will do the job and marks the
according bytes in the display as correct or wrong.

The information in the status line is always related to the current cursor posi-
tion. In the default settings the left field contains the exact position inside the
data stream. Only data bytes are counted, other events like level changes are
ignored.
The right field contains the exact time when the data byte has occurred.

52

11.1. USER INTERFACE

You can modify the output of each statusbar field anytime by an own Lua script.
For instance, if you like to show the time in another format, or if you are interest
in the distance to the previous and/or next byte. The chapter 16.1 will give you
an introduction how you can realize this.

Data channel selection
The data monitor optionally displays both data channels (sources) A and B
or a single one. According to the bus connection (tapping 2/4-wire system or
segemnt analysis) the display of both channels makes more or less sense. You
can switch between the several directions anytime just by click the channel
selection in the toolbar.
The data channel selection alse defines which data are stored. If you choose

Data channel selection
displays both or single
data sources

both data channels A+B both are stored, otherwise only the data of the selected
one. In this way it is possible to save the recorded data or parts of it depending
on the data source in one file.

Synchronizing
Each analysis window can synchronize its current view with other windows
(see Synchronizing the data view). Is the data monitor the active window, that
means the one which gets your inputs, than every move of the cursor sends a
sync signal to other opened windows.
This includes the cursor movement as a result of a search or positioning. In this
way you can watch the signals in the signal monitor, remotely controlled by the
search for certain data sequences.
Leftclick the designated data byte to fade in its representation in other views.
Likewise the data monitor reacts on a synchronization from other views and
fades in the respective data section, where the cursor is positioned onto the
data byte nearest to the original event.
How the data monitor acts when it receives the sync signal from another active

Scroll, Lock or Update
data display by other
views

window determine the sync-buttons in the toolbar.
By default the data view is locked, the window does not react on changes.
Please note that the data monitor always generates a sync signal, independent
of the choosen display lock/unlock function. Windows which shall not react on
sync signals have to be locked.

Addressing the window content
Besides the navigation by cursor or the left scroll bar the data monitor offers an
absolute positioning and shift relative to the current position..
Click the symbol in the toolbar or open the dialog via View→Goto. Or simply
just press Ctrl+G.
Simply enter the absolute address or the wanted offset and click one of the
following keys.

Absolute or relative
positioning with Ctrl+G

Absolut: Moves the data sector to the entered address, shortkey Alt+A.

Plus: Adds the entered value to the current position and moves the data view
towards data end, shortkey Alt+P.

Minus: Subtracts the entered value from the current position and moves the
data view towards data start, shortkey Alt+N.

53

KAPITEL 11. THE DATA VIEW

The input can be made in decimal, hexadecimal or binary format. Simply click
on the used number format. Like most other dialogs you can leave this dialog
open as long you need it.

11.2 Data selection
If you press the left mouse key while the cursor is on one of the displyed data
byte a context menu opens. In this menu any section of the recorded data can
be selected. You can mark the beginning or the end of the selection.

You can also mark the beginning of a region with Ctrl + left mouse key and the
end with Shift + left Mouse key. This corresponds to the file selection in Mirco-
soft Windows Explorer. The selection is marked with a light blue color.
If you want to select all data, just press Ctrl+A.

The data selection can be stored seperately or assigned to a Region with F4.
By storing special data sequences you can examine these data for transmission
errors or compare to other data sequences.
With the export or copy and paste mechanism you are allowed to evaluate any
desired section of data in other applications.

Copy and Paste

Copy and Paste
in a word processor

Copy and paste copies the selected range as text into the clipboard and paste it
into another program. If the target application supports RTF like the most word
processing software (for example WordPad R©, Microsoft Word R©or OpenOffice
Writer R©), the copied data will be inserted with the origin color information, i.e.
the data of port A are shown as red, data of port B as blue2.
Pure text editors (like Notepad) doesn’t provide any text formating. Therefore
the information of the data direction has to be visualized in a different way.
Data bytes received via the first Data channel (A) precedes a dot, data from
the second data channel (B) a colon.
The text display is generally in the hexadecimal format to avoid problems with
different character fonts.

00000000 | :73 :65 :6e :64 :20 :64 :61 :74 :61 :20 | send data
00000010 | :77 :69 :74 :68 :6f :75 :74 :20 :65 :72 | without er
00000020 | :72 :6f :72 :0a .73 .6f .6d .65 .20 .72 | ror.some r
00000030 | .65 .73 .70 .6f .6e .73 .65 .0a :66 :72 | esponse.fr
00000040 | :61 :6d :65 :21 :0a .66 .72 .61 .6d .65 | ame!.frame
00000050 | .20 .72 .65 .73 .70 .6f .6e .73 .65 .0a | response.
00000060 | :00 .00 :70 :61 :72 :69 :74 :79 :0a .70 | ..parity.p
00000070 | .61 .72 .69 .74 .79 .20 .61 .6e .73 .77 | arity answ
00000080 | .65 .72 .0a .00 .6e .6f .20 .6f .6f .70 | er..no oop
00000090 | .73 .00 :31 :32 :33 :00 | s.123.

Save data selection
The data monitor allows to save any selected range (see Data selection) as
binary data into a file. This file herewith contains an accurate series of the
marked data. You will appreciate this when you want to compare the recorded
data sequences to others, available as data files.

2Coloured Copy and Paste is supported only in the analyser software for Microsoft Windows.

54

11.2. DATA SELECTION

For example if you know the result of the sent data from a bus participant or the
original data and you simply want to check if these data have been correctly
transmitted. Simply select the wanted range or all data with Ctrl+A and click
the menu item File→Save as....
If you selected both data channels for display (A+B) both are stored as well.
For a comparison it makes sense to choose just one channel.

Export a data selection
To analyze a section or all recorded data with spread sheet analysis you can ex-
port these as a CSV (Comma Separated Values) File. Spreadsheet programs
offer extensive statistical tools to evaluate the data. For example the frequency
distribution of single data or minimum and maximum times between the bytes.
The export capabilities concern the data only. If you are interested in an analy-
sis of other events read chapter Export selection in the event monitor.
Select the wanted range and click on the entry export as CVS in the file menu.

Data export
as comma separate value
list

In the opening export dialog you can select from the list of the available values
any value by clicking on it and moving it with the right arrow to the list of the
export values. Repeat this for all interesting values.
To change the sequence of the export values click on the value to shift and
move it up or down with the up or down arrow.
Likewise you can remove a value from the export list with the left arrow.
Then enter a name for the export file and click on ’OK’ to start the export.
For exporting the current view of the data monitor is regarded. The data is
exported as hexadecimal values with prefix 0x, or as decimal value or as ASCII
character included in apostophes. The same applies for the addresses.
(The address is the position of the data byte in th data stream). An example for
the hexadecimal address and data format:

"Timestamp(us)","Address","Input","Data"
3547,0x000050,A,0x20
3547,0x000051,B,0x20
3634,0x000052,A,0x21
3634,0x000053,B,0x21
3720,0x000054,A,0x22
3720,0x000055,B,0x22
...

The same selection showing a decimal displaying address and the data as
ASCII.

"Timestamp(us)","Address","Input","Data"
3547,00000080,A,’ ’
3547,00000081,B,’ ’
3634,00000082,A,’!’
3634,00000083,B,’!’
3720,00000084,A,’"’
3720,00000085,B,’"’
...

Note! The timestamp resolution is in micro seconds (us). Because we have
record this samples with a loop back jack, always two data events on data
channel A and B have the same timestamp.

55

KAPITEL 11. THE DATA VIEW

11.3 Data displaying
The data display can be adapted to your own requirements. Just open the setup
dialog in the menu Settings→Configure Data Monitor...
Every view offers only those setup possibilities which are relevant for this view.
In case of the data monitor it is:

Display: Number and form of columns and data.
Colours: Coloring rules for representation and marking of certain data.
Font: Font type and size.

All settings can be tested with the apply button before they are finally accepted
with the OK button.

Columns and data format
In this part of the settings dialog Settings→Configure Data Monitor... you can
individually select the number of columns as well as the kind of display (hexa,
decimal, ASCII). The number of lines are changed by extending or reducing
the display window.
In addition you can fade in the generally defined names for the first 32 cha-
racters of the ASCII character set (control characters), e.g. to display ’LF’ for
linefeed instead of Hex 0A.
Not printable characters can be displayed alternatively as a dot or as the origi-
nal character according to the chosen font type.

Coloring data
The data monitor allows to color any data depending on the data source. That

Coloring data
with colour rules...

is an important feature if you want to hi-light certain data bytes or sequences.
For example the EOS character like carriage Return and/or Line Feed. Or cha-
racters wit a set 8th or 9th bit as often used in bus protocols to separate data
from address commands.

To activate this feature you can define any number of coloring rules which are
applied on the display of the transmitted data.

Each rule contains the data source or data channel (A or B), a ran-
ge for the data value and the color to dye these data bytes. You can
switch every rule on or off individually by enabling or disabling it.
The input of the data values from/to is done in decimal where the ran-
ge is 0 to 511. Values above 255 makes sense only if you analyze
transmissions 511. with 9 data bits.
The rules are processed in the sequence from 1 to n (or from top to
bottom). Rules can overlap. In this case the last rule is regarded. With

this it is possible to overwrite rules in parts to recolor single bytes of a rule de-
fined before.
The presetting has four rules. By clicking onto the + button you can add new
rules at any time or remove them by using the − button.
New rules are attached either at the end or are directly inserted over the selec-
ted rule. To remove a rule you first have to select it by clicking onto it.
All entered rules are automatically stored and are at the same time available
for all later opened data monitors.

56

11.4. THE DATA INSPECTOR

Color schemes are intended for simple applications. If you want to mark the da-
ta with complex rules use the integrated Lua script editor in the watch window,
see chapter 11.6

Change the font
Besides the number of columns and the representation of the data bytes you
also can alter the font type, e.g. to use a font with letters of equal width instead
of the default proportional font or to adapt the letter type and height.
Click on Settings→configure data monitor to open the settings dia-

Choose another font
in the settings dialog

log.
The chosen font type is automatically stored.

11.4 The data inspector
Watching the transfered data is one thing. To find out the reasons for communication

The data inspector
shows time distances and
converts data byte values

problems sometimes it is necessary to analyse the exact timing for the transfe-
red data. What is the time difference between two bytes? Or how long does it
take to receive the answer for a sent data string? Click on the ’Inspect’ symbol
in the toolbar or press Ctrl+I to open the data inspector. The data inspector
offers some informations related to the current byte:

Position: The absolute position of the byte and it’s source (Port A or Port B).
State: Error state of the byte, i.e. Parity, Framing or Break.
Absolute Date/Time: Shows the absolute date and time of the received byte
in your locale time format.
Time difference: Displays the distance between the previous and next byte.
View as...: Converts the data byte value in different formats.

Display the line states
To watch the current line state in parallel to the data byte simply open the
’virtual LedTester’ in the control program and switch it to synchronizing ope-
ration.

The virtual Ledtester
shows the current line
levels

11.5 Searching the record
The data monitor contains some functions which are optimal adapted to the
search for data and data sequences. So different searches are possible. The
search for a certain series of data bytes, for too short or too long times bet-
ween request and answer, or simply for transmission errors like parity, framing
or break. Since every search starts from the beginning or the current cursor
position all search functions can be combined in any way.

Pattern search
One of the outstanding attributes of the data monitor is the search function for
special data sequences. The search input is not limited to simple comparisons
of data strings. In fact the Search dialog allows the input of so called regular
expressions.
Regular expressions are extended by the wild card characters ’*’ and ’?’, known
from the MSDOS DIR Command. So the command DIR *.HTM lists all files

57

KAPITEL 11. THE DATA VIEW

which have the extention HTM.
DIR FILE?.TXT lists the files (when available) FILE1.TXT, FILE2.TXT etc. Si-
milar mechanisms for searching special data sequences are offered by the
Search dialog of the data monitor. It is opened by the search symbol in the
toolbar or simply with Ctrl + F.
Generally search starts at cursor position! By default the search is starts with
the begin of the data recording. You also can start the pattern search beginning
from any other time stamp within the data stream. For this purpose position the
cursor of the data monitor at the desired start position and activate the button
’Search from cursor position’.
To find a special sequence you first have to describe this sequence in the input

Find any string
with regular expressions

box. It can be a simple string, e.g. LOGIN in a modem connection. Click on the
Search button to start the search in the recorded data stream.
The search is always restricted to the displayed data channel. If you have se-
lected channel A only the bytes assigned to this channels are searched. The
same applies for channel B. If both channels are displayed all recorded data
are regarded. Often the searched data can not be described by a simple data
series. For example the recorded data stream can contain the word ’LOGIN’
in the following combinations: LOGIN, Login or login. The latter ones can be
described like in MSDOS with ?ogin for search. To find all three variants you
have to describe the search pattern as a series of the characters L,O,G,I,N,
where each character can be a capital letter or not.
For the conversion a regular expression is used. The expressions are listed in
the Table below.

[L l] [Oo] [Gg] [I i] [Nn]

Every character is described by a Set which exactly corresponds to the sear-
ched letters.
Imagine you inspect a data connection where from time to time the CR of a CR-
LF(carriage return line feed) sequence is missing. That means you search for a
single LF WITHOUT a CR directly before. The appropriate regular expression
is:

[! \ x0D] \ x0A

and means: all characters except Hex 0D(means CR), followed by a Hex 0A
(LF).
A regular expression is a series of any charcter, where certain characters can
have a special function. They are listed in the following Table . If you want to use
one of the special characters as a normal one, e.g. if you search for Password?
and ’?’ is NOT any charcter but really the question mark, you have to quote it.
This is done by a preceding \ char. For instance

Passwort$ \ backslash$?

With the ’*’ char in a search pattern any data sequence is marked. That makes
sense only if this character is framed by other search patterns, otherwise ever-
ything will be found.
The following expression finds all names found between ’LOGIN’ and ’PASS-
WORT’ but not single ’LOGIN’ Sequences without following ’PASSWORT’ Se-
quence:

LOGIN∗PASSWORT

58

11.5. SEARCHING THE RECORD

As a special case the search mechanism in the DataView also supports 9-bit Search for 9-Bit
sequencesvalues. A 9-bit value cannot input as a normal character. The DataView there-

fore extends the definition of any hex value as described above by a ’special’
3-digit hex input. Such a value (or 9-bit character) is initiate with a upper \X
followed by three hex digits.
The following example looks for a sequence starting with a Hex 10B or Hex 133
followed by Hex 33:

[\ X10B \ X133] \ X033

The following tablelists the available expressions.

ExpressionMeaning

? any character

* any character string

[abc] a char out of the set abc

[!abc] a char not member of the set abc angehört

\xHL a char in hexadecimal notation, H is the upper half byte, L the
lower half byte

\X1HL Same like above, but supporting 9-bit values. The first digit must
always 0 or 1. Valid range is from 000 to 1FF. Please note, that a
upper ’X’ always requires a 9-bit hex digit!

\? the character ?

* the character *

\[the character [

\] the character]

\d any decimal character 0...9

\n the linefeed control character (Hex. 0x0A)

\s any whitespace character (blank, linefeed, carridge return, hori-
zontal tab)

\\ the character \

A misentry will be showed as a selected marked input, so you just can retype
a corrected version of your matching rule.

Search for time distances
Beside the pattern search facilities the data view also supports the search for
defined time distances between two data events. Click onto the search symbol
in the toolbar or press Ctrl+F and select the slider Delay.
The time specification is always done in seconds, e.g. 0.0015 for 15 millise-
conds. The smallest time unit correspondends to the resolution of the analyzer
and is 0.000001 or 1µs. Time distances can be defined as limits for over or

Find time distances
and transmission
intermissions

under stepping or as a range. The button with the link symbol decides if both

59

KAPITEL 11. THE DATA VIEW

times have to be valid for the search result (AND-relation) or only one of them,
which is the default.
Please take a look to the following table:

Time(s)
>=

Logic Time(s)
<

Result

1.000000s OR 0 Finds all distances which are longer than
1s OR shorter than 0s. Negative times are
not valid, so that the search is for times
longer than the entered 1s.

1.000000s AND 2.000000s Finds all times which are longer than 1s
and shorter than 2s, i.e. Times between 1
and 2 seconds.

10000000s OR 0.001s Finds all times which are greater than
100000s or smaller than 1ms. Since such
long times will never happen only times
smaller than 1 ms will be found.

Besides the time specifications also the sequence plays a role. That means
whether the timely distance between two data bytes of one source, e.g. data
channel A, is measured. Or a data byte from channel A, followed by a data
byte from channel B (a possible answer). Depending on the wiring you can in-
tentionally search for answering times of a certain bus device and check the
answering behavior.
The sequence which shall be obeyed for the search process can be set expli-
citely. Default is Any, i.e. the sequence is irrelevant.
Please note, that the sequence can be set only if both data sources A and B
are activated in the data monitor, otherwise it is disabled.

Search for transmission errors
The search for error conditions refers to errors in the data transmission. These
are framing and parity errors. Breaks are usually no errors, but because they
must not be mixed with the nul byte and are sometimes used for initializing or
resetting of communication partners they are also integrated into the search
mechanism.
The search for errors is easy. Mark one or more error conditions and start the

Find transmission
errors
just with a click

search with a click onto the start button.

11.6 The Watch window
The Watch Window serves as the input window for Lua scripts and as the
display of their program outputs. If you open up the Watch window for the first
time you see an empty list of eight lines or entries. Each entry a Lua script is
assigned. As long as you do not enter a script or this script does not produce
any output the entry stays empty.
You can display any information in these lines. Numbers, text or a combination
of both but no line breaks. Every output is limited to one single but unlimited

60

11.6. THE WATCH WINDOW

line.
Double click on any entry you want to write a script for or whose script you want
to change. Or click on the Lua tab. Both opens the script editor of the selected
entry.

The script editor
The integrated script editor offers all you await from a user-friendly editor! Syn-
tax highlighting unlimited Undo/Redo, Copy and Paste and import and storing
of scripts for exchange with other users.
The entries for storing or loading of script are activated in the file menu as soon
as you open the script editor. The file operations always refer to the active edi-
tor and therefore to the selected entry in the watch window.
The MSB-RS485 software comes with a number of examples which you can find
in the examples/Lua directory of the installation directory.
You can load one of these examples into the editor (see section 11.6) or simply
enter the following two lines to get you in the mood (presumed some recorded
data):

1 dv . watch (" Cursor a t " , dv . cursor ())
2 dv . mark (dv . cursor () , 1 , # f f8080)

This small script displays the current cursor position in relationship to the cur-
rent segment and colors the corresponding data cell in a bright red.
To run the script click on the ’Run’ button. Alternatively you can use the key
combination Alt+R. The script output is shown as an entry in the Watch List

Run script
and also in the text line of the script editor because you do not see the watch
list entry when the editor is opened.
In case of a wrong input or syntax error an error message is displayed at this
place. In our example the current cursor position- if you input the text correctly.
With the start of the script it is transferred into the internal byte code of the
Lua interpreter. This code is run each time the cursor is moved or the window
content is changed. The same happens when you close the editor and return
to the watch list. Move the cursor or click onto another data cell to see effects
of the script.
A storage of the editor content is not necessary. The data monitor automatically
saves its current status and restores it with the next start.
Additionally you can save the editor content as a text file to reload it into the
editor at any time.

Example scripts

Lua examples
in the installations folder

In the folder examples/DataView of the installation directory you will find some
examples to show the possibilities of Lua. Start the analyzer software by double
clicking (Windows) or open the wanted project file *.msbprj from the control
program msb_serv. Alternatively you can directly load the project from the
control program.
Every example project contains a recording and loads the data monitor with the
corresponding Lua script and settings so that you can immediately start.

9bit.msbprj
Analysis of a 9 Bit data protocol including check sum test. Lua coded LRC (Lo-
gitudinal Redundancy Check) function tests for the correctness of the check
sum when the cursor is positioned on the start of the protocol sequence.

61

KAPITEL 11. THE DATA VIEW

At the same time the sequence is visualized with different colors for Start (Ad-
dress) byte, length, data and checksum byte.
errors.msbprj
Coloring of the data bytes for frame-, parity errors or breaks. Shows the infor-
mation output in the status line, the iteration over the data shown in the data
monitor and the indication depending on the error status.
modbus-rtu.msbprj
Shows the 2-wire segment analysis of a RS485 Modbus connection with one
Master and two slaves. The single sequences are colored differently for ad-
dress, function code, data and check sum. By clicking onto an address byte
automatically the CRC16 check sum of the sequence is computed and dis-
played in the status line for comparison with the recorded check sum.
srecord.msbprj
Coloring of all protocol sequences in the data area. Using the recorded data of
a Motorola S-Record transfers the data display is shown in terms of color where
two following bytes in the BCD representation are converted into the underlying
8 bit value.

Limitations
You can run any operation in Lua, write complex functions and perform exten-
sive evaluations. But the data monitor allows each Lua script only a certain
number of computing operations (recursions) or time period for the execution.
As soon as your entered script exceeds this limit you get an error message.
And that is of a good reason.
If you have programmed an endless loop for whatever reason the data monitor
will kindly notify you instead of wordlessly stop further co-operation.

11.7 The toolbar
The tool bar is used for a quick access to the most needed functions. Some are
identical to other views, some are specific for the data view..

A End: Saves all settings and closes the window.

B Display mode: According to the mode the window either shows always
the current (last recorded) event or locked or actualizes its content syn-
chronous to the other windows.

C Data direction: The protocol monitor can display both data directions
(port A and B) combined or separately to display them in different win-
dows.

C New View: Opens a new window with the same sector and settings.

62

11.8. SHORT COMMANDS

E Search dialog: Opens the dialog for pattern search and transmission
interceptions.

F Goto...: Opens the Goto dialog to select the visible section by a absolut
address or offset.

G Data inspector: Starts the data inspector.

11.8 Short commands

Key commands
of the most important
functions

Aktion Kurzbefehl

Runs the current script in the script editor Alt+R

Online Help for the data monitor F1

Save selection as region F4

Start selection Ctrl+Left mouse key

End of selection Shift+Left mouse key

Select all Ctrl+A

Clear selection Shift+Ctrl+A

Copy selection into clipboard Ctrl+C

Export selection Ctrl+E

Open search dialog Ctrl+F

Open goto dialog Ctrl+G

Show data inspector Ctrl+I

Open View in a new window Shift+Ctrl+N

Save settings and close data view Ctrl+Q

Save selection as binary file Ctrl+S

63

KAPITEL 11. THE DATA VIEW

64

12
The Event View

When did an event occur? Did a certain level change happen
while data was transferred? Or was an error condition (break,
parity, framing) recognized? How the status of the bus lines was
at a specific time.
The event monitor lists all occurred events, searches for event
sequences or level conditions and exports events as CSV file.

Contrary to the data monitor the event monitor displays all occurred events (da-
ta and level changes) with their time relationship. While the data monitor offers
a lot of mechanisms to investigate data streams and to represent the data view
of the recording, the event monitor is optimized for the display and search of
level changes.
That concerns to changes in the level of the control signals as well as asyn-
chronous events like framing or parity errors or breaks.
Each event gets equipped with a time stamp which represents the exact time
of its occurrence with a resolution of 1µs. The time distance between has no
influence on the display. So signal conditions and changes before and after the
recording are easy to identify.

The search for certain data sequences is the task of the data monitor. As soon
as a search contains a level condition, a change or an error condition the even
monitor is the right tool.

With the LevelFinder not only any static level can be found but also sequence
of events and level changes. The single search parameters can be combined
optionally with AND or OR and can additionally be combined with a time dura-
tion to search for events within a defined time frame or to exclude them.
In the chapter event search the search options are described in detail.

12.1 User Interface
The window of the event monitor at any time offers a quick overview over the
level conditions. From here you start the search for event sequences, the export
of any section or compare different sector of the recorded data stream.

65

KAPITEL 12. THE EVENT VIEW

Each line is one event
The event monitor displays the recorder events in list form where every line
represents the current event and its changes compared to the preceding line
status. The list display can be freely configured. Except for the first entry (the
type of event) you can fade each column out by drawing its width to zero with
the mouse. (In the view menu you can reactivate the faded out columns).

Disable columns
Simply draw the column
width to zero.

The description of the columns automatically adapt to the defined names. The-
se names can be set globally in the control program.

All event types at a glance
The event monitor distinguishes between the following event types:

Symbol Event type Description

Data byte Data byte received at data channel A.

Data byte Data byte received at data channel B.

Level
change

Any change of the level of any signal, including level
changes of the data lines.

Framing Data byte received with a framing error.

Parity Data byte received with a parity error.

Break Break detected.

The indented error symbols do never occur singular, but always together with
(followed by) a data byte event because it signals an error in the data transfer.

66

12.2. NAVIGATION THROUGH THE EVENT LIST

Changes in the levels of a data line (TxD or RxD) likewise trigger level events,
followed by a data event as soon as the data bits are completely received.

Level changes of the data lines
If you do not see level changes of the difference signal inputs CH1...CH4
you have to activate them in the control program. If you are not interested
in these changes deactivate them to save computing power and disk space
since these events come very often.

12.2 Navigation through the event list
The event monitor offers beside the usual scrolling possibilities by mouse, mou-
se wheel, scroll bar or arrow and page up/down keys also the directed jump to
the next or last event of the same type.
Click onto the desired event and than click the ctrl key together with the down
arrow resp. up arrow. In this way you easily navigate from break to break or
from data byte to data byte.
For longer records you can purposefully fade in ranges from a determined

Go to event
absolute, stepwise or
time-dependend

event or time stamp. The latter one awaits the input of a time offset from the
start of the recording.
The specification of an event number allows to jump to a determined event or
to move in determined steps from event to event. For example all 1000 events
forth and back.

12.3 Event search with the LevelFinder
The detection of definite event sequences is one of the unique features of the
event monitor. In contrast to the data monitor the search is not restricted to
certain data sequences (for which the data monitor is the best solution) but
intentionally adapted to changes in the physical level of the single lines. What
does that mean?
You can set up the event monitor to search for the level change and/or the
condition of any line. You can combine it with the occurrence of a certain data
byte or a number of set bits within a data byte or an asynchronous event like
break, framing or parity error. Click onto the magnifying glass symbol in the
toolbar or press Ctrl+F to open the search dialog.

LevelFinder
searches for level
changes, errors and time
relationships between
events

Enter a search pattern
The search pattern may be complicated. The integrated level finder accepts the
search input in form of logical expressions where every expression can exist of
one or more conditions which can be combined with AND or OR.

Expression: condition1 condition2 ... conditionN

For example:

AND: CH1=high BDIR=high

The formulation of the single conditions correspondents to the intuitive question
for searching of defined conditions. In the preceding example: Search for the
position in the recording where at the same time CH1 is high AND the bus

67

KAPITEL 12. THE EVENT VIEW

direction signal BDIR is high too. 1.
Each condition consists of a target (which the condition shall be applied to) and
a description of this condition. So:

Target=Condition

Target is either a single signal line, described by its (also user defined) name
or a data (channel) source A or B.
Condition defines the status which the target has to have for the search. In
case of one signal line this could be one of the three possible level conditions
on, off or invalid (alternative names are mark, space, high, low). If the target is
a data source the possible conditions are an exact data value, a bit pattern or
an error.

Correct definiton of a condition
Conditions must not contain blanks. Please note, that the names ’A’ and ’B’
are deserved and must not be used for signal names.

Formulate a level condition
Level conditions can be defined for each of the four difference signal inputs
CH1...CH4, both of the additional auxiliary inputs IO1, IO2 and the internal by
the analyzer generated bus signals BDIR and BSIG. Not defined lines are sim-
ply ignored and not regarded for the search.

Input Description
1, on, high, mark, -V Signal level is logical one which corresponds to a

physical level of –0.7V...–7V (measured at a diffe-
rence signal input). All listed descritions are equal.
CH1=on is the same as CH1=1 or CH1=high.

0, off, low, space, +V Signal level is a logical Zero which corresponds to a
physical level of +0.7V...+12V (measured at a diffe-
rence signal input). All listed descritions are equal.
CH1=off is the same as CH1=0 or CH1=low.

none, invalid, 0V Signal level is invalid. That corresponds to a phy-
sical level of -0.7V...+0.7V (according to the EIA-
422/485 definition the trigger level of the receivers
is about ±200mV. By the higher level of the MSB-
RS485 analyzer rest levels which are set by pull-up
and pull-down resistors are clearly detected as rest
levels. The definition of an invalid level is as follows:
CH1=none, CH1=invalid, CH1=inactive or CH1=0V.

Formulate a data error
Data errors occur only in connection with a data (channel) source. Therefore
the target has to be A or B.

1This sample describes a bus conflict. A |high| level of the BDIR signal means an active trans-
mission at CH2 and a bus participant at CH1 must not send at the same time

68

12.3. EVENT SEARCH WITH THE LEVELFINDER

Input Description
break, frame, parity The data received by the data channel A or B shows

a break or a framing or parity error. For example a
parity error can be found by A=parity or B=parity.

Formulate a data value
Each of the data channel A and B (the data bytes received at the according
sources) can be checked for equality or for set bits. The latter one is meaning-
ful when certain bit combinations may are not allowed in the bytes or have a
special meaning, defined by the used protocol.
Any data are described by with the * symbol.
The level finder offers four types of entry possibilities:

Input Description
A=*, B=* Every data event (A or B) delivers a hit, the data

value is not regarded. Makes sense if you search
for any data event.

A=’x’, B=’x’ Checks the target (A or B) for equality with the cha-
racter, enclosed by the apostrophes. The search for
a question mark, received at port A is written as :
A=’?’.

A=$xx, B=$xx Checks the target (A or B) for equality with the he-
xadecimal value. A search for a question mark, re-
ceived at port A is written as: A=$3f or A=$3F.

A=~xxxxxxxx,
B=~xxxxxxxx

Checks the target (A or B) for the set bits in
xxxxxxxx. For this check the bit pattern is logical
AND combined with the data and then checked for
equality. To find a data byte at port B with a set 7th
bit enter: B=~10000000.

Search input and search

Example project
in the folder
examples/EventView

Before you start open in the control program the sample project
levelfinder495.msbprj in the examples\EventView folder. It is about
a 2-wire segment analysis with the additional recording of a digital output of a
Modbus device with the help of the second digital IO terminal of the analyzer.
The recording contains a number of data errors and some combinations of le-
vel changes which we will search for in the following.

Search for a break in data channel A
Open LevelFinder dialog with Ctrl+F
Click onto the text field and enter �AND: A=break�
Click the start button
Click the button ’More’ to search for the next break
Go back to the last hit by click on ’Back’

The visible segment of the monitor changes its position with every hit and dis-
plays the found event as a black line.

69

KAPITEL 12. THE EVENT VIEW

Search for a break in data channel A or B

Click onto the text field and enter �OR: A=break B=break�

Search Break at Port B with DTR high

Click text field and enter �AND: B=break DTR=high� eingeben

That was easy. We make it a bit more complicated and search for:

Search for an inactive CH2 and BSIG as well as BDIR, IO1, IO2 all high

Now enter into the text field:
» AND: CH2=none BSIG=none BDIR=high IO1=high IO2=high «

Click the button ’more’ to find the next hits.

You can combine all level conditions, data and data errors combine in any way.
It is not possible to combine different logical operations within one search ex-
pression, that means mixing of AND and OR expressions. But we will see, that
AND and OR are allowed in succeeding expressions. Sequences with different
search expressions are used for searching of signal changes. For instance the
search for a change in the bus direction BDIR with an active IO2 line at the
same time.

Search for signal changes
Changes are definedby two or more sequenced search expressions which de-
scribe the line state before and after the signal change. In this respect we
expand the search inputs for the possibility to enter more than one expression
in different lines. It is possible to vary the logical operators.
Watch the picture at the side. The interest is on the lines CH1, BDIR and IO2.
We want to find the signal change displayed in the ideal zoomed display.
All together there are three changes that have to happen one after another:

Looking for a level
change?
No problem with the
LevelFinder!

1 CH1=high BDIR=low IO2=low

2 CH1=none BDIR=none IO2=low

3 CH1=none BDIR=none IO2=high

In each state all three signal levels have to be fulfilled, that means that for every
single search expression the AND condition has to be true.
Enter each expression in an own line in the text field of the level finder Since
the AND operation is the default you can omit it and write the lines exactly as
noted above. (Instead of high or low you also can write 1 or 0).

Wrong input, what happens
If you made a syntactical error, e.g. a wrong name or an invalid character, the
level finder answers with a yellow text field as soon as you start the search.

70

12.4. MARK A SELECTION

You can write any search combinations, for instance the search for a certain
data byte together with an active IO2 line, or any data byte from data channel
A, followed by a change of the bus direction signal BDIR.
The number of search expressions is unlimited but you have to keep in mind
that every expression costs additional computing time and slows down the
search process.
The search process runs in parallel to the application and can be aborted at
any time by clicking the abort button. Even during a longer search you can ope-
rate the event monitor in a normal way and speed.
The LevelFinder saves the current search expression automatically. That also

The LevelFinder
finds data bytes, errors
and level changes incl.
time measurement.

is done when you close the monitor or the complete session.

Start a search beginning with a defined position
Click onto the line where the search shall start and activate Start search from
the cursor position.

Searching with time specification
As a special feature the LevelFinder offers an integrated stop watch which can
be started in every search expression and can be read out in the following
expressions. Thus it is possible to search for level changes which exist a certain
time only. For instance an active bus direction signal (BDIR) with a duration in
the range of 0.1 to 0.3 seconds.

Level duration?
Search with the
stop watch

1 BDIR=none
2 BDIR=high watch.start
3 BDIR=none watch.time>0.1 watch.time<0.3

Please note that all conditions within an expression are combined per default
with the AND operator. line 2 defines the change of the bus direction from an
inactive level none (line 1) to high and at the same time the watch is star-
ted. Strictly spoken the watch is reset and loaded with the time of the occurred
event, the change of the BDIR signal to high.
In the third line the change of the BDIR level back to an inactive state is AND-
combined with a duration greater than 0.1 sec and smaller than 0.1 sec. Posi-
tive signal edges which occur later than after 0.3 sec. are ignored.

Indication of the hits in the signal monitor
The sample contains exactly two positions which fulfill the conditions above,
nicely to be seen in the signal display. Open the signal monitor and set it to
’synchronization’ with other views. With every search result the marker jumps
to the corresponding signal position.

12.4 Mark a selection
Certain functions of the event monitor like the saving of events as an indepen-
dent record file or the export in CSV format for later evaluation or as a region
always refer to a before defined selection.
The selection of any event sequences is done like in other programs. Left click

71

KAPITEL 12. THE EVENT VIEW

in the list representation onto the line, which shall be the first event of the se-
lection. Then scroll by mouse wheel or scroll bar through the recording until the
desired last event of the selection. This one click with the left mouse key while
pressing the Shift key.
To jump to the last event of your selection you also can use the level finder or
the Go-To dialog. It is only important that you click the last event together with
the Shift key.
Please note that you can select only ranges and not single arbitrary events.
With File→save as... you can save the selection as an own record file
*.msblog for later evaluation with the analyzer tools. In this way the interes-
ting parts of a recording can be extracted and the necessary storage capacity
can be reduced.

Save a selection as a region
A region serves for marking of certain sections of the recorded data which are
of special interest. Contrary to a selection regions are valid for all analysis tools.
As soon as a region is added it is visible for all analysis windows.
Regions are displayed in different colored ranges and exist independently from
the event monitor until they are explicitly deleted.
To save a selection as region press the F4 key or click onto Edit→copy

Colored regions
highlight special sections

to region. A maximum of eight regions are available. Under View→show
region dialog the available regions can be fade in or out or removed.
Regions are part of the record and are stored together with the data in the
record file *.msblog.

Export a selection as CSV file
The even monitor allows to save any selection of recorded events as a Comma
Separated List (Values) (CSV). You will use this when you want to import these
values into a spread sheet program like Microsoft Excel, Gnumeric or Open
Office.
At this time you will probably ask why you should want to import the recorded

Data export as CSV
for external evoluation

events into a spread sheet program.
Assume you want to sort the recorded events for the longest pauses between
two sent data bytes. Or you want to create a statistic of the events or data. Re-
quirements of this type are the domain of spread sheet calculation programs.
The event monitor offers you the possibility to benefit from them.
At first mark the selection of the events to be exported. With Ctrl+A you can
select all recorded events at one time.
Click in the menu File→export as CVS.

An export dialog opens where you can select a value from the list of available
values by clicking and moving with the right arrow button into the list of expor-
ted values. Repeat this for all desired values.
To change the sequence of values click onto the value to be moved and shift it
in the desired direction with the up or down arrow.

Likewise you can remove a marked entry back to the selection list with the left
arrow. Finally you have to enter a name for the export file and click the OK
button to start the export.

72

12.4. MARK A SELECTION

The list of available events contains the following values:

Value Description
Number Event number, starting with 0.

Type(Event) The following types are defined: A=Data at port A,
B=Data at port B, L=Line level change.

Time(s) Time stamp of the event as offset to the start of the
recording in seconds with microsecond precision.

Data The data (9bit) as an decimal value (0...511).

Data/State contains either the data up to 9 bit (event type A/B) or
the tri-state status of all lines, see line⇒1.

Error in case of a transmission fault it contains the kind of
error like B (Break), F (Frame) or P (Parity).

dt same type Time difference to the last event of the same type in
seconds with microsecond precision like 0.251518.

dt last Time difference to the last occurred event, i.e. the last
recorded change in the line. The result is in seconds
like 0.000217.

Date/Time(s) Absolute date and time with microseconds of the event
like 2014-08-20 09:49:31+148762s.

Alteration Shows only the changes since the last event as dis-
played in the alteration column.

SignalLevels Shows the state/alteration of all lines as displayed in
the signal line columns. The graphical display is chan-
ged to a respective text string⇒2.

*CH1,*CH2,*CH3,... Exports the state of the given signal as a number. The
leading ’*’ differs the signal name from any other field.
-1 represents -12V or mark or ’logical 1’
0 is an invalid level resp. an inactive line state
+1 represents +12V or space or ’logical 0’⇒3.

[1] Data status
The content of this field is depending on the data type. If it is a transferred data
byte it contains the data value in the lower 9 bits, the upper 7 bits are 0.

Bit Unused Data Byte Bit

15 8 7 0

In case of a level change the upper 8 bits contain the logical state of the lines.
The lower 8 bits contain the valid states. If it is ’0’ the line is in an invalid condi-
tion, that is a level of -0.7V to +0.7V.

Bit
15

Line State Bit
8

Bit
7

Valid State Bit
0

CH1 CH2 CH3 CH4 BDIR BSIG IO1 IO2 CH1 CH2 CH3 CH4 BDIR BSIG IO1 IO2

73

KAPITEL 12. THE EVENT VIEW

[2] Text symbolism of the level conditions
Sent data and line states is different information and consist of a different num-
ber of fields. Data are represented as hex value with a respective ASCII or con-
trol name, while the lines are listed as eight status and transition sequences.
To reach the same number of columns for the CSV export the data as well as
the conditions of the lines are embraced by " ... ".
The conditions and transitions of all lines are described by the following names:

^ : High level

- : Invalid level

v : Low level

A sequence of -v describes a change from invalid to low level, while a level
change from high to low is described by ^v. The following extraction shall clarify
this:

"Number","Type(Event)","Time(s)","SignalLevels"
0,L,17.359117,"-vCH1,-^CH2,-^CH3,-vCH4,-vBDIR,-^BSIG,-^IO1,--IO2",
1,L,18.408774,"vvCH1,^^CH2,^^CH3,vvCH4,vvBDIR,^vBSIG,^^IO1,--IO2",
2,L,18.408911,"vvCH1,^^CH2,^vCH3,vvCH4,vvBDIR,vvBSIG,^^IO1,--IO2",
3,L,18.409014,"vvCH1,^^CH2,v^CH3,vvCH4,vvBDIR,vvBSIG,^^IO1,--IO2",
4,L,18.409118,"vvCH1,^^CH2,^vCH3,vvCH4,vvBDIR,vvBSIG,^^IO1,--IO2",
5,L,18.409845,"vvCH1,^^CH2,v^CH3,vvCH4,vvBDIR,vvBSIG,^^IO1,--IO2",
6,A,18.410003,"-vCH1,-^CH2,-^CH3,-vCH4,-vBDIR,-vBSIG,-^IO1,--IO2",

[3] Signal names during exporting
Please note, that the lines do not have to have the default a names since you
can rename them according to your application. The new names appear ins-
tead of the standard names. Compare the chapter signal names in the control
program.

12.5 Measure time distances
Every event can be marked by right click the event line (item). Next to the right
side of the type column a clock symbol is fade in and in the status line the time
difference from the marked event to the current event at the cursor position is
displayed.
A second right click onto the marked event removes the clock mark again.

74

12.6. THE TOOLBAR

12.6 The toolbar
The tool bar is used for a quick access to the most needed functions. Some are
identical to other views, some are specific for the event monitor.

A End: Saves all settings and closes the window.

B Display mode: According to the mode the window either shows always
the current (last recorded) event or locked or actualizes its content syn-
chronous to the other windows.

C New View: Opens a new window with the same sector and settings.

D Event dependent scrolling: Jumps to the last or next event of the same
type like the one at cursor position.

E Event search: Opens the level finder dialog for event search.

F Goto...: Opens the Goto dialog to select the visible section by event
number or time specification.

12.7 Short commands

Key commands
of the most important
functions

Action Short command

Online Help for the event monitor F1

Opens the search dialog (LevlFinder) Ctrl + F

Open Goto dialog Ctrl + G

Jump to the time marker Ctrl + T

Select all Events Ctrl + A

Clear selection Ctrl + Shift + A

Save selection as region F4

Jump to last event of the same type Ctrl + Up arrow

Jump to next event of the same type Ctrl + Down arrow

75

KAPITEL 12. THE EVENT VIEW

76

13
The Protocol View

With the analysis of protocols you enter the next level of
communication. The seemingly arbitrarily occurring data are
sorted and grouped according to your rules. Output functions
allow you to format and color data sequences individually.

New template API

PLEASE NOTE - Template language has changed!
The Protocol View now uses the scripting language Lua for its template defi-
nitions and isn’t compatible with templates written in version 3.2 or older any
longer.

If you still use an older version of the Analyzer software (3.2.x) forget all about
in={...}, aout={...} and bout={...}. The new template mechanism
seems to look a little bit more complicate compared with the previous one, but
you will soon appreciate and like the chances Lua will offer you. Especially
when your telegrams show you the correctness of checksums, function names
instead raw numbers or device names in place of address bytes. So here we
go...

The exchanging of data between two or more communication partners general-
ly happens depending on a protocol, which defines the format of the transferred
data together with their content and meaning. The smallest data unit is called a
telegram or datagram. While the data monitor displays the transferred data in
the sequence of their occurrence without any interpretation (which sometimes
has advantages) now the analysis of protocols and datagrams is the next level
for understanding the communication.

For this, the data stream, captured by the analyzer, has to be split into single
data sequences or telegrams before displaying them on screen. Since there
are no defined rules (resp. many of different standards) for the definition of
datagrams, a lot of different practical realizations are known. They vary from
simple end-of-string characters (EOS), start (STX) and end (ETX) marks to the
usage of certain pauses between single data packets (Modbus RTU, Profibus),
run time length codes and other definitions.

Further more: Every telegram should be shown with certain information: num-
ber, address (bus participant), function code, data (in various formats), checks-
um, telegram delimiter and other things which will become needful when you

77

KAPITEL 13. THE PROTOCOL VIEW

have to interpret or analyze a communication.

It’s obvious that even a wide range of predefined protocol styles cannot meet
all requirements. Especially when the analyzer program has to face individual
protocol definitions or preferences. The Protocol View therefore handles both,
the splitting of the continuous data stream into separate telegrams and the in-
dividual displaying of the telegram contents by an integrated script language.
Lua has already proved its suitability in the Data View, so it is more than logical
to use it again as the protocol template scripting language.

The previous implementation of the Protocol View (until version 3.2.x) used a
completely different design and couldn’t offer conditions, which are essential
if you want to handle data in the telegram depending on their position or tele-
gram length. And: The former mechanism also lacks of a more flexible design
to transform number of data bytes in other formats. For instance: if you like to
show two sequent bytes as a decimal value or validate a checksum.

Lua provides you to create protocol templates with its full language strength.
You can write your own functions for checksum validation (beside an already
integrated checksum module which offers you some standard checksum algo-
rithms), you can replace certain telegram function numbers with more readable
names and hide telegrams you don’t like to see.
And you can do this interactively and already during an active recording. The
recording itself isn’t disturbed. Your modifications are directly applied on your
recorded data so you can see the changes immediately.
We will discuss the whole template scripting later. At the beginning let us show
you the Protocol View in action.

13.1 User Interface
To make the protocol template adaption for your application as easy as possible
the Protocol View integrates a powerful editor with full Lua syntax highlighting
and all comfort you are expecting from a really good editor. The input of tem-
plates is interactive and directly effects the display of the recorded data, even
while the logging is still running.

This capability of the Protocol View to define sequences using Lua as a tem-
plate language exceeds -of course - the normal use of a fixed selection list.
Admittedly this demands a certain learning process concerning the syntax and
may sometimes be a bit hindering for trivial problems.

Therefore the user interface of the Protocol View offers both. Often used tem-
plates, e.g. standard protocols like Modbus RTU, Modbus ASCII, telegrams
with 9-bit addresses, different combinations of carriage return and linefeed cha-
racters or changes in the data direction are simply to recall from a selection list.
These templates are unchangeable (they are read-only, so don’t worry to lose
them) but can be easily added as a copy and then edited by the user. The fol-
lowing picture shows a typical application.

78

13.1. USER INTERFACE

In the upper part of the monitor the recorded data are displayed according to
the definition of the chosen template. In this case a Modbus RTU communica-
tion was selected. Each telegram is prefixed by an optional telegram number
and telegram time (here relative to the record start time). But you can also de-
fine your own date and time format and disable the prefixed information at all.

The lower expanded window contains the editor with the relating template writ-
ten in Lua. As mentioned before: the Protocol View comes with a lot of prede-
fined templates for common use. The selection of a given protocol is always
possible, also during an active session.

You can copy a predefined template for modification according to your applica-
tion just by a simple click and without losing the original.
At first you probably will change only small things: the color of the data or the
definition of a line end character. With F5 or a click onto the cogwheel symbol
you directly apply your changes onto the logged data.
The predefined templates offer an easy start for own concepts. All new templa-
tes are automatically added to the list and saved (see chapter 13.3).

79

KAPITEL 13. THE PROTOCOL VIEW

13.2 Protocol Display
The Protocol monitor displays every sequence (or telegram) in a single line.
Each telegram can optional prefixed with one of the following information: the
telegram number, the telegram time (absolute and relative to the record start),
the duration of the telegram and the time distance to the former sequence. All
this is easily changeable in the settings dialog.

Telegram time and index
You can add optional information for every telegram (independent of the used
template) in the Settings menu under Settings→Configure Protocol Monitor...

The prefixed information also indicate the source (or direction) of the telegram.
I.e. whether the telegram was recorded on Data channel A (red text) or Data
channel B (blue text). In a bus application you will - of course - find several
devices speaking on Data channel A, and others on Data channel B. Since all
sequences do not always occur alternately every sequence is counted sepa-
rately for each data direction. Uncompleted sequences, that means datagrams
whose end condition is not yet reached (e.g. no end character received), are
marked with a punctuation behind the telegram number.
Please note: The punctuation is only shown when the telegram number is dis-
played.

Synchronizing the display
All MultiView programs have in common that they can synchronize or lock their
displays or always show the last recorded data (auto scrolling). That also ap-
plies for the protocol monitor. Leftclick onto the desired datagram to switch all
the other views to the display of the marked datagram. The current datagram
is framed.
Likewise the protocol display is sensitive to synchronization from other views.
The sequence which is part of the synchronization is marked with the current
line selection.

Choosing a range
With the export or copy and paste function you can process further any seg-
ment of the protocol in other applications. For that you first have to mark the
desired area.
The selection is done like the file selection in your operating system. Place the
cursor onto the first cell of the desired sector and click the left mouse key. After
that shift the visible section to the end of the range and mark the end of selecti-
on with a left-click together with a pressed shift key. The field will become gray.
If you want to mark all lines press Ctrl+A.

13.3 Protocol Templates
The protocol monitor contains a list of predefined templates for the represen-
tation of known protocols. By clicking onto the selection button of the template
toolbar you can chose another template at any time.

Template Toolbar
Editor inactive

80

13.3. PROTOCOL TEMPLATES

The opening list shows you all available protocol templates. The adaption of
the protocol view is directly done after selecting a list item.
In the beginning the list will only contain the predefined templates which come
with the program. As they are samples for your own template definitions they
can neither be deleted nor be altered.

Define your own templates
For the handling of the templates the protocol monitor follows a double strat-
egy. On the one hand it offers a list of ready-made templates (as mentioned
above), on the other hand their adaption for own applications shall be as easy
as possible.
To change a protocol template or to create a new one first select a template

New template
by simple copy or altering
of an already available
template.

Apply template
with key F5.

from the list which should be used as a basic for your own modifications.
Afterwards open the template editor by clicking on the ’Open Template Editor’
button or simply press Ctrl+T.

As a next step you can copy the current template with the now active ’+’ button
in the template toolbar. The appearing dialog asks you for a meaningful name
which will be used in the selection later. If you input an always existing name
the program will warn you that you are going to overwrite a template.
The copied template can be modified in the editor window in any way. With F5
or click onto the wheel symbol in the toolbar the template definition is applied
onto the data.
If the template is erroneous a respective message is fade in into the status line.

Modify an available template
As already mentioned the predefined templates are secured against deletion
and modification. This is allowed for your own templates only.
Simply select the favored template from the list and modify it according to your
application. All changes are automatically saved every time the template is
applied to the data.

Apply the template
Please note, that a change in the splitting rules requires a new formatting of
the recorded data and may take a while depending on the size of the recor-
ding. The modification of the datagram representation affects the display only
and is directly visible.

Template files and where you can find them
The ProtocolView uses two predetermined places for the storage of template
files. All predefined templates are located in the Scripts/ProtocolView fol-
der in your installation directory. Every template file in this folder has read-only
permissions.
Own defined templates (as other program and session information) are indivi-
dually saved for every user in a special application directory. Linux user will find
that directory as usual in their home path under:

81

KAPITEL 13. THE PROTOCOL VIEW

/home/username/.IFTOOLS/SerialAnalyzer/Scripts/ProtocolView

Under Windows the directory is located under:

C:\Users\username\AppData\Local\IFTOOLS\SerialAnalyzer\Scripts\ProtocolView

Every time a ProtocolView is opened it scans at first the script folder in the
installation directory and then searches for existing template files *.msbtml in
the IFTOOLS application data path. All found template scripts are afterwards
listened alphabetically in the selection control.
You can also add and remove template files manually in the second folder, but
we recommend to use the [+] and [-] buttons in the template toolbar in this case.
Nevertheless there is sometimes another reason to handle single template files
directly. This comes in handy when you like to share templates with other users
or want to transfer them to another computer.

The template file manager
The protocol monitor offers you a simple file dialog to manage your own tem-
plates. With it you can import and export template files, rename or delete them.
The template file manager only allows the operation with template files and
protect you from other things.
You can open the file manager from within the file menu or simply by press
Ctrl+M.

Import and export templates
To import a new template, just drag and drop it into the open template file ma-
nager. Likewise you can export or store a template by dragging it from the file
manager to another location.
The imported files appear automatically in the template selection list after-
wards.

Rename or delete a template file
You can edit every displayed template file in the template file manager. Just
select the desired file with a normal left click. Afterwards left click the file name
to start the editing. Change the name and finish the renaming with Enter (or left
click a point outside the editor field). The file manager will give you a warning,
if the new name already exists. It also checks the new file name for a correct
extension.
To delete a file, just select it and press the Del key on your keyboard.
Please note! Renaming or deleting the currently used template isn’t allowed for
obvious reasons! The file manager indicates this with a little message every
time you try to do this.
As soon as the file manager was closed, the template selector represents the
changes of your own template portfolio in the selection list.

Open a template file directly
Alternatively you can simply drag and drop a template file into the open templa-
te editor. The ProtocolView replaces the current template with the new one and
applies it immediately to the recorded data. The program will also warn you, in
case a template with the same name already exists.

82

13.4. TEMPLATE LANGUAGE SYNTAX

13.4 Template language syntax
Every template (file or script) has to provide at least two functions. The first
one splits the incoming data into single datagrams (or telegrams). It contains
the code which is necessary to decide when a new telegram starts and when
it ends.
The second function let you control the appearance of every telegram in an
enormous field. Here you can specify how the telegram content (or parts of
it) are shown. For instance: You can convert a sequence of bytes into other
numeric formats, validate a checksum or label data sections with your own
description. And you can color various sections of the telegram in your own
colors.
There is another - third function - to filter specific telegrams interactively using
the filter control in the toolbar. But at first we will concentrate us to the two
essential things, a template has to do:

1 Splitting the data stream into telegrams
2 Individual displaying of the telegrams

Splitting the data stream into telegrams
For the definition of a protocol template the first question has always to be:
when does a telegram start and when does it end? Sometimes an end condi-
tion is sufficient, i.e. a Carriage Return and/or Linefeed, or a alternation of the
data direction. But often the world is more tricky. You may thinking of binary
protocols with certain pauses between every telegram like Modbus RTU, Profi-
bus or similar.

The ProtocolView covers the complete splitting functionality in the function
split as shown in the following.

1 function s p l i t (data , i n t e r v a l , a l t e r n a t i o n , s t r i n g , f i l t e r)
2 −− here are your s p l i t i n s t r u c t i o n s and i t s r e t u r n s ta te
3 return STATE
4 end

This function is called every time a new byte arrived in the record and must
return one of the following states:

1 STARTED→ a new telegram begins
2 MODIFIED→ the data doesn’t do anything but increases the telegram length
3 COMPLETED→ the telegram is complete
4 REMOVED→ remove the current telegram for filter reasons
5 MARKED→ mark the current bytes as telegram start and continues

It quickly becomes apparent that the current byte isn’t enough to detect a valid
start or end condition. For instance: An EOS (End Of String) condition consist
of more than one byte. Or: A telegram is specified with a certain start AND a
certain end.
That’s why the split function is called with additional parameters. They are:

1 data→ the current data byte (up to 9 bits)
2 interval → (short intval), the time distance to the former byte in seconds (with

microsecond resolution)

83

KAPITEL 13. THE PROTOCOL VIEW

3 alternation→ (short alter), true when the direction has changed
4 string→ (short str), all received data since the last telegram as a byte string
5 filter→ the current selection of the filter tool passed as a string

You can rename the parameter for your own purpose but don’t change the or-
der of the parameter! It’s also allowed to skip unused parameter from the right.

Ok, it seems more complicated as it is. Just let us make some little examples.
Imagine a simple protocol where every telegram ends with a linefeed.

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 i f # s t r == 1 then return STARTED end
3 i f data == 10 then return COMPLETED end
4 return MODIFIED
5 end

We don’t need the filter parameter and therefore skipped it (line 1).
Our example lacks of a specified start condition. In other words: A new tele-
gram starts with the first byte after the former telegram was finished with the
linefeed character.
The parameter str is a Lua string and contains the whole data of the current
(yet partly) telegram. In case of the first byte, the length of the string is 1 and
we have to return STARTED. Lua offers you a special length operator ’#’ to
query the count of bytes within a string (line 2). But you can also code it as

i f s t r : len () == 1 then . . .

Line 3 specifies the end condition. The telegram is complete when a linefeed
occurs. The parameter data contains always the current byte. We compare it
with the linefeed (character value is 10) and return COMPLETED in case the
condition is true.
In all other cases (the current telegram length is greater as 1 and the current
data byte isn’t a linefeed) the function returns MODIFIED.

Now let us adapt our little example to a protocol with a defined start and end
string. For instance something like the Modbus ASCII protocol.

STX
’:’

Data
ASCII coded data as 0-9 and A-F

EOS
CR LF

A telegram starts with a colon (character value is decimal 58) followed by the
data (the data field only allows the characters 0-9 and A-F). The end of the te-
legram is marked with a Carriage Return and Linefeed (CRLF). The according
split function is then:

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 i f data == 58 then return STARTED end
3 i f s t r : f i n d (" \ r \ n ") then return COMPLETED end
4 return MODIFIED
5 end

Line 2 compares all occurring bytes with the colon and returns STARTED as
soon as a colon is detected.
Line 3 searches for the CRLF in all currently received bytes ("\r\n" is the

84

13.4. TEMPLATE LANGUAGE SYNTAX

Lua equivalent to CRLF). A found CRLF means the end of the telegram and
will return COMPLETED.
All other data bytes are assumed as the telegram data and therefore only
MODIFIED the telegram.

We have covered the parameters data and str. But what about the remaining
intval and alter?
Imagine a protocol with alternately sent telegrams. Every telegram start is de-
fined as a change in the direction and you won’t bother with any further details.
Here is a fitting split function:

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 i f a l t e r then return STARTED end
3 return MODIFIED
4 end

The parameter alter is always true when the source of the current data byte
isn’t equal to the former byte. All we have to do is returning a STARTED then.

Some protocols use a defined pause (specified as a idle time of the transmis-
sion line) as a delimiter between the telegrams, i.e. the Modbus RTU protocol.
The advantage of such a design is: The telegram doesn’t depend on ’special’
start and/or end characters and therefore can use a binary format for the data.
(There isn’t any data byte which must interpreted otherwise).

Telegrams with time gaps for framing
The Modbus RTU delimiter for instance is defined as a sending pause of 3.5
byte. Or generally speaking: The time which is needed to send 3.5 bytes with
the current baud rate.
And that’s where the last parameter intval comes into picture. intval is the
time distance to the former byte in seconds. The resolution is - as usual - 1µs.
The transmission time for a byte depends on the baud rate. Luckily the Proto-
colView provides you with some helpful functions. But first the split function
code:

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 i f i n t v a l > p ro toco l . bytepause (3.5) then return STARTED end
3 return MODIFIED
4 end

The code should be clear enough except for the protocol.bytepause.
The ProtocolView extends the Lua language with its own module functions.
bytepause returns the sending time of the passed count of bytes for the cur-
rent baud rate in seconds. So we just have to compare the time since the last
byte with the calculated pause to detect a start condition. You will find a detai-
led description of the protocol module on page 127.

But hold on! What about the COMPLETED state?
The sending pause is both! The current telegram is COMPLETED by detecting
the pause AND a new telegram is STARTED at the same time. In this case the
ProtocolView marks the current telegram automatically as COMPLETED when
a new telegram starts.

85

KAPITEL 13. THE PROTOCOL VIEW

Uncompleted telegrams are shown with a series of dots in the prefixed number
or index field (you can enable or disable the number field in the settings dialog).

Special case: Telegrams consisting of only one byte
Telegrams with only one byte are a particular case because the single byte re-
present both: A STARTED and also a COMPLETED state. Exceptions to this
are only protocols with a idle time as a telegram delimiter like Modbus RTU or
ProfiBus1, because the telegram delimiter is independent of a certain byte.
But all other protocols with a predefined EOS (End of String) must consider the
specific nature of a single byte message. For instance:
Your protocol terminates every telegram with a linefeed (LF). Beside this a sin-
gle LF is used as an short acknowledge.
Without a special handling of a single linefeed the ProtocolView will display the
first occurring LF as an incomplete telegram until another one arrives. Here is
the split function of the EOSwithLF template:

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 i f # s t r == 1 then return STARTED end
3 i f data == 10 then return COMPLETED end
4 return MODIFIED
5 end

Since the first byte is marked as the beginning of a new telegram also a single
LF will be handled in this way. You may consider to exchange the lines 2 and 3,
but this isn’t a solution. Then a linefeed will only be shown when it was the last
byte of a sequence with different bytes.
The split function processes always one byte after another. In case of a single
byte telegram the function therefore has to return both: STARTED and COM-
PLETED. Fortunately you can solve this just by combine both states in a single
return statement. See below:

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 i f # s t r == 1 then
3 i f data == 10 then
4 return STARTED + COMPLETED
5 else
6 return STARTED
7 end
8 else
9 i f data == 10 then

10 return COMPLETED
11 end
12 end
13 return MODIFIED
14 end

Line 4 returns STARTED and COMPLETED only when a linefeed arrives (line
3) and if it was the first byte in the telegram (line 2). Both conditions make sure
that it is really a single LF.

Telegrams with a start sequence of more than one byte
There are certain protocols in which a telegram has to start with a byte se-
quence instead of a single character. For instance the DNP3 protocol uses the

1ProfiBus use a single byte message (SC) as a short acknowledge frame. The message con-
sists only of the byte E5h.

86

13.4. TEMPLATE LANGUAGE SYNTAX

bytes 0x05 and 0x64 (in hexadecimal notation) as a start and synchronisation
header. A simple DNP3 frame looks like:

Start
0x05

Start
0x64

Length Control Destination Source CRC

Apart from the fact, that such a protocol has to make clear that the start se-
quence must not occur in the data payload or in general in the remaining part
of the telegram frame, the split function nevertheless faces a problem here.

Consider the following situation: The split is called with an received byte
0x05 which - maybe - markes the start of a new DNP3 telegram. You can re-
turn the result STARTED - but hold on!
What about a following byte unequal to 0x64. In such a case the formerly retur-
ned result is simply wrong. You may suggest to wait until the next byte arrived
before checking for the 0x05 0x64 sequence. Even so the returning STARTED
will still be invalid because the telegram than won’t start with the 0x05 but with
the 0x64 and the very first byte of the start sequence will just ended as the last
byte of the former telegram.
What we need is a mechanism which ’marks’ a byte as a possible start and
continue checking the next arriving characters before deciding on the final re-
sult.

Here the MARKED result comes into play. Returning MARKED doesn’t start
a new telegram. On the contrary, the parsing of the incoming bytes continues
as if nothing had happened. First when the split function returns STARTED
(and only STARTED), the formerly marked byte (or byte position in the incoming
data stream) was used as a real new telegram start. An example:

1 function s p l i t (data)
2 i f data == 100 and l a s t == 5 then
3 return STARTED
4 end
5 l a s t = data
6 i f data == 5 then
7 return MARKED
8 end
9 return MODIFIED

10 end

How does it work?
The trick is to use a global variable last to hold the former data byte. By default
Lua variables are always global and initiated with nil. Normally we recommend
to avoid global variables and to use local in front of each variable definition,
but there are sometimes exceptions. This is one of them.
The first line in the function (line 2) checks the present byte passed as parame-
ter data with 0x64 and the former byte associated to last with 0x05. In the
beginning last is not defined. Lua creates it on the fly with a nil content (see
next section 13.4).
A matching comparison means the start of a new telegram and we simply has
to return STARTED (line 3).
Afterwards we update last for the next call of split (line 5).
The following condition in line 6 makes sure that a new telegram start (trigge-

87

KAPITEL 13. THE PROTOCOL VIEW

red by returning STARTED in line 3) is always associated with 0x05 (or in other
words: MARKED).
If data is neither 0x64 nor 0x05 split ends up by returning MODIFIED to
attach the current byte to the internal telegram sequence.

There is only one internal MARKED position!
A returning MARKED value in split always overwrites a former MARKED posi-
tion and therefore the final STARTED returns the position of the last MARKED.

Global and local variables
Lua variables are global by default. They are accessible from all over the script
after their first occurrence. But this leads sometimes to strong results in the
script execution when equal named variables which are supposed to be inde-
pendent share in fact the same content. Consider the following lines:

1 function chksum (data)
2 n = 0
3 for i =1 ,# data do
4 n = n + data : byte (i)
5 end
6 return n % 255
7 end
8
9 function out ()

10 −− the cu r ren t te legram
11 tg = telegrams . t h i s ()
12 −− query the cu r ren t te legram leng th
13 n = tg . s ize ()
14 −− a simple checksum
15 sum = chksum (tg : s t r i n g ())
16 −− te legrams less than 8 byte need a spec ia l handl ing
17 i f (n < 8) then
18 −− do something wi th smal l te legrams
19 end
20 end

In line 12 we assign the actual telegram length to the variable n. Afterwards we
calculate the checksum of the telegram by passing the telegram content as a
Lua string to the function chksum. And here lurks the problem!
The function chksum internally also uses a variable n to summarize the sever-
al data bytes. But from the Lua interpreters point of view n ALREADY exists
(declared by the assignment of the telegram length). Therefore n is first set to
0, then summed up with the telegram bytes.
When querying the variable n in line 16 we don’t get the telegram length but
the sum of the telegram bytes! That’s not exactly what we want - isn’t it?
You can - of course - just rename the n in the chksum function. However in
huge templates this maybe means a lot of work and will not be as easy as ori-
ginally thought.
A more simple solution is: Declare every variable used only in a function as ’lo-
cal’. The appropriate Lua keyword is local. Applied to our example the shown
modification of line 2 is completely sufficient:

88

13.4. TEMPLATE LANGUAGE SYNTAX

1 function chksum (data)
2 local n = 0
3 for i =1 ,# data do
4 n = n + data : byte (i)
5 end
6 return n % 255
7 end

The local variable n now only exists in the function chksum and hasn’t any re-
lation with the telegram length n in line 12.
But what about the variable i?
The counting (or control) variables within a for loop are local in general. They
exists and are ’visible’ only in the loop body.

You see: It is always a good idea to declare all variable as local in the first
place. In case of a need for a global accessible variable we suggest to add a
prefix to its name, i.e. g_n (global n).

Gain more information about the current data event
The arguments passed to the split should be completely sufficient in most
cases. Nevertheless there are situations when you may need additional infor-
mation for a correct telegram extraction. Such like the data direction (and not
only the alternation state), the time stamp (and not only the distance).
Because every new parameter perhaps breaks the compatibility with older tem-
plates, the split function therefore supports access to these information with
the event module. The module is described in the module section. Here just a
simple example how you can determine the receiving source or direction of the
current data event. The example presumes a protocol with two different EOS
characters depending on the direction. All telegrams (and therefore data) re-
ceived at port A (CH1) use a CR as a EOS, the telegrams from port B (CH2)
were finished with a LF.

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 local eos = 13
3 i f event . d i r () == 2 then eos = 10 end
4 i f # s t r == 1 then return STARTED end
5 i f data == eos then return COMPLETED end
6 return MODIFIED
7 end

Split conclusion
The split function provides an adaption for almost all kinds of telegrams. Alt-
hough the split code consists of a few lines, it became clear, that a little know-
ledge about Lua is necessary when writing your own templates. See chapter
16.1 for a complete introduction into this amazing script language.

Splitting the data stream in single telegrams was the first thing. In the next
section you will learn how to format a telegram in your very own way.

Individual displaying of the datagrams
All the formating is done in a single out function. The function is always called
when a telegram is drawn in the telegram window. This provides a greater

89

KAPITEL 13. THE PROTOCOL VIEW

performance because only the code for visible telegrams is executed.

1 function out ()
2 −− your fo rmat ing i n s t r u c t i o n s
3 end

The principle of the new output mechanism based on a set of individual rectan-
gular boxes in a row, whereby each row represent a single telegram.
Every box contains a caption line and a text specified by the user. Foreground
and background color are free definable too. The caption and the text are Lua
strings and therefore can be the result of any operation with the data in the
relating telegram. The same applies for the colors. For instance:
The following picture shows a single Modbus RTU telegram realized with the
new mechanism. The various elements of the telegram like the address, func-
tion number, etc. are shown as individual boxes. The last box displays the vali-
dated CRC16 checksum, here green for a correct value.

The size (width) of a box is calculated from its content and every new box is
attached automatically on the right border of the previous box. This means:
the box positions in the row depend on the order of their calls inside the Lua
out() function. The first call of a box function displays a box leftmost, the
second shows a box right to the first and so on...
A simple box will be defined like this:

Time
0.137345

A simple box

1 function out ()
2 local te legram = telegrams . t h i s ()
3 box . t e x t { cap t ion ="Time " , t e x t =telegram : t ime () }
4 end

Please note! We don’t show the split code here and focus on the output functi-
on. Later we will discuss the box model with an example, including a functional
split method.
The code above will create the simple box as shown on the left. The caption
or headline text is ’Time’ (because we want to display the time stamp of the
telegram), the content is the result of the telegram:time() call which we
will explain in the next section.

The box will use black for the text and the outline and white as the background
color as long as no color is specified.
Let us now extend the output with the data in the telegram.

1 function out ()
2 local te legram = telegrams . t h i s ()
3 box . t e x t { cap t ion ="Time " , t e x t =telegram : t ime () }
4 box . t e x t { cap t ion =" Data (hex) " , t e x t =telegram : dump { } }
5 end

For this we add a second box in line 4. Instead of iterating through all data and
build the ’text’ by ourself, the telegram luckily offers a much simpler way.
The telegram function dump returns any desired section of its data as a hex

90

13.4. TEMPLATE LANGUAGE SYNTAX

data (dump) string. By default, without parameters, the full data sequence is
used.
One word on the curly brackets of the dump call. Like the box.text they indi-
cate that the function expects named parameters.

Time
2.339189

Data (hex)
03a 030 032 030 032 043 034 00d 00a

Time
2.351468

Data (hex)
03a 030 032 030 032 030 046 031 035 036 041 034 032 037 044 00d 00a

The box with the hex data appears behind the time box because it was called
AFTER the time relating box. All data is shown as a 3 digit hex value per default
(remember that the MSB-Analyzer supports 9 bit data values).
dump is one of the mostly used functions, just because it give you a first glimpse
into the telegram without pondering about the size or content.

Telegram data access
As mentioned above: The out() function is called for every telegram (line) be
displayed in the ProtocolView window. For instance: If the window shows the
first ten telegrams, out() is called ten times, starting with the very first recor-
ded telegram as created by the split() code and ending with the tenth.
When you scroll through the record and the window displays a section some-
where in between, lets say the telegrams from 1201 to 1217, then the out()
function is called for the telegram 1201, 1202 until it reached number 1217.
The telegram relating to the actually handled line is accessible via the telegrams
module with:
loca l te legram = telegrams . t h i s ()

For instance: A box like the following

loca l te legram = telegrams . t h i s ()
box . t e x t { cap t ion ="Number " , t e x t =telegram : number () }

will display the telegram number of the currently in the function out processed
telegram. But the telegrams module offers not only access to the actual tele-
gram.
Imagine the displaying of the telegram structure depends on information of pre-
vious telegrams. Or you have to know the elapsed time since receiving the prior
telegram, to decide if the actual telegram is a request or a response2.

The telegrams module gives you random access to ALL telegrams, from the
very first one until that one which is currently handled in the out() function3.
You can simply indexing any desired telegram with:

loca l te legram = telegrams . a t (index)

The parameter index addresses the telegram in two different ways.
A positive index (absolute addressing) gives you the telegram of the passed
index (or number). An index of 1 returns the first recorded telegram, an index
of 100 the hundredth one. Indexing a not existing telegram will give you a clas-

2The Modbus RTU template makes use of this.
3You are not longer limited to the current and previous telegram as in former program versions.

91

KAPITEL 13. THE PROTOCOL VIEW

sical Lua nil result.

By far more interesting are ’negative’ indexes. Negative indexes stand for ’rela-
tive addressing’ and are counted backwards (from the current telegram in the
out function.
So means an index of -1 the actual telegram, and telegrams.this() is just
an alias for it. An index of -2 accesses the prior telegram. And also here exists
an alias: telegrams.prev(). Persons with Lua experience will surely not be
surprised by this as Lua use negative indexes in several string functions too.
The following code demonstrates how you can calculate the response time bet-
ween the actual and previous telegram:

1 function out ()
2 local t c u r r = telegrams . t h i s ()
3 local t p rev = telegrams . prev ()
4 i f not t p rev then
5 tp rev = t c u r r
6 end
7 local dt = t c u r r : t ime () − t p rev : t ime ()
8 end

Since telegrams.this() or telegrams.at(-1) always returns a valid te-
legram, this doesn’t happen when one query the precursor of the very first
telegram. Without the precaution in line 4 tprev will become nil when scrol-
ling to the top. And nil means a lot of white emptiness in the telegram window.

In most cases using the telegrams.this() is sufficient. But the world of
protocols is not always easy and sometimes a bus device reaction depends on
an earlier received telegram type. If you like to mirror such a behavior in the
telegram window, you have to iterate through the past telegrams.
The access time of telegrams.at(index) is linear, nevertheless to iterate
through an undefined amount of telegrams means literally nothing good. There
is always a risk for endless loops which the Lua interpreter punishes with an
’Overrun of allowed executions’. To avoid it, limit the iteration to an responsible
number.

We have spoken a lot about telegram accessing. Now it’s time to look after the
resulting object - the returned type telegram itself.
The telegram type represents a single telegram as it is returned from a
telegrams module function. It’s like an container (or object) and covers all
telegram relevant information like the telegram time, the size (count of bytes or
data), the direction respectively source and so on.
In the example above tcurr and tprev are of the type telegram.
Don’t confuse the type telegram with a module. It’s rather like a number or
a string and only exists as a result of a preceding call of a telegrams mo-
dule function. You can assign the result (the type telegram) to a variable (as
shown above) or process it directly. Therefore the following lines provide the
same outcome. At first an approach without any intermediate step.

1 box . t e x t { cap t ion ="Number " , t e x t =telegrams . t h i s () : number () }
2 box . t e x t { cap t ion ="Time " , t e x t =telegrams . t h i s () : t ime () }
3 box . t e x t { cap t ion =" Length " , t e x t =telegrams . t h i s () : s i ze () }

92

13.4. TEMPLATE LANGUAGE SYNTAX

That’s quite feasible, but leads to three identical and therefore unnecessary
calls of telegrams.this(). A better way to achieve this is:

1 loca l tg = telegrams . t h i s ()
2 box . t e x t { cap t ion ="Number " , t e x t = tg : number () }
3 box . t e x t { cap t ion ="Time " , t e x t = tg : t ime () }
4 box . t e x t { cap t ion =" Length " , t e x t = tg : s ize () }

Differences between . and : in Lua
You may have noticed that the examples above contain a lot of dots ’.’ and
colons ’:’. We havn’t explain it yet and you may still ask yourself what’s the dif-
ference in using a dot or a colon.

The dot in telegrams.this() accesses the function at of the telegrams
module. A module is - simply spoken - organized as a table and the function
at is one of several table entries. The dot here refers to the at entry in the
telegrams table (or module). For this you can regard a module also as a col-
lection of functions.

But what about the tg:number()? It seems like the same kind of expression,
namely to call the function number() of the tg ’object’.
I say ’object’ deliberately! tg is a telegram variable or telegram object but it
ISN’T a module. By using a colon ’:’ Lua is instructed to access the function
(passed after the colon) which belongs to a specific variable/object (named be-
fore the colon). tg:number() therefore returns the number of the associated
telegram tg.

1 loca l tg = telegrams . t h i s ()
2 −− the number o f the cu r ren t te legram
3 tg : number ()
4 tg = telegrams . prev ()
5 −− now i t ’ s the number o f the prev ious telegram
6 tg : number ()

In the example above tg was first initiate with the current telegram (line 1), than
asked for its number (line 3). Afterwards we assigned tg to the previous tele-
gram. tg is now identical with the previous telegram. Asking its number again
returns a different number, namely the number of the previous one.

The following rule may serve as a little mnemonic:

Use a colon ’:’ every time you can say: �Variable, please do this for me�

Examine a telegram content
As said before: You can request several telegram information by calling the
relating function. They are all listed in section 13.7. One of this functions I con-
sider particular important because it will give you a quick view of the telegram
data when you struggle with unknown content. The functions name is dump{}
and you learned about it earlier in this chapter.
dump returns the content of the associated telegram as a Lua string, listing all
data bytes as hexadecimal or decimal values. A dump call accepts the following
named parameters, here with their default settings:

93

KAPITEL 13. THE PROTOCOL VIEW

te legram : dump{ f i r s t =1 , l a s t =−1, sep = ’ ’ , base=16 , width =3 , max=s ize / 2 }

Without any given parameter, dump returns the whole content (first=1, last=-1)
as 3-digit (width=3) hex values (base=16), separated by a space (sep=’ ’).
The parameter max limits the maximal count of shown bytes and outputs only
the first and last half n bytes, assigned to max.
Let’s assume a telegram with the byte sequence:

3A 30 32 30 32 30 46 31 35 36 41 34 32 37 44 0D 0A

And a simple out() function:

1 function out ()
2 local tg = telegrams . t h i s ()
3 box . t e x t { cap t ion ="Time " , t e x t = tg : t ime () }
4 box . t e x t { cap t ion =" Data (hex) " , t e x t = tg : dump { } }
5 end

This will give you an output like this:

Time
2.351468

Data (hex)
03A 030 032 030 032 030 046 031 035 036 041 034 032 037 044 00D 00A

The argument base let you specify the number base. Default is hexadecimal
(base=16), but you can also choose a decimal output with base=10.

4 box . t e x t { cap t ion =" Data (dec) " , t e x t = tg : dump{ base=10 } }

Time
2.351468

Data (dec)
058 048 050 048 050 048 070 049 053 054 065 052 050 055 068 013 010

Next we will limit the hex values to two digits, since the telegram contains only
8-bit data.

4 box . t e x t { cap t ion =" Data (hex) " , t e x t = tg : dump{ width=2 } }

Time
2.351468

Data (hex)
3A 30 32 30 32 30 46 31 35 36 41 34 32 37 44 0D 0A

Ok, that was easy. Now imagine you want do display the last two bytes (the
CRLF) in an individual End-Of-String box. dump offers you the two position
parameter first and last to select any range of the content. You can pass the
byte position as an absolute value, i.e. first=1 means starting with the first byte
of the telegram. Or you count backwards with negative positions.

4 function out ()
5 local tg = telegrams . t h i s ()
6 box . t e x t { cap t ion ="Time " , t e x t = tg : t ime () }
7 box . t e x t { cap t ion =" Data (hex) " , t e x t = tg : dump{ f i r s t =1 , l a s t =−3, width=2 } }
8 box . t e x t { cap t ion ="EOS" , t e x t = tg : dump{ f i r s t =−2, l a s t =−1, width=2 } }
9 end

The last byte is indexed as -1. To select the last two bytes, we indicate a range
of first=-2 and last=-1. Accordingly we stop the dump of the former bytes at
position -3 which means the byte before the CR. This is what we get:

94

13.4. TEMPLATE LANGUAGE SYNTAX

Time
2.351468

Data (hex)
3A 30 32 30 32 30 46 31 35 36 41 34 32 37 44

EOS
0D 0A

As you can see: Using negative indexes is a very comfortable way to avoid
querying the length of the telegram for absolute positioning.

The parameter sep is easy to understand. It just replaces the space or blank
between the values with any other single character/string. And - of course - you
can also remove the separator completely with:

4 box . t e x t { cap t ion =" Data (hex) " , t e x t = tg : dump{ width =2 , sep = ’ ’ } }

Time
2.351468

Data (hex)
3A30323032304631353641343237440D0A

The ProtocolView handles telegrams without limit in size. Nevertheless it is
sometimes annoying to scroll horizontally through a lot of data output by a
dump{} call. Here comes the last parameter max into play. max specifies the
maximum count of displayed data/bytes, one half at the beginning, the other
half at the end. The remaining data in between were shown as byte count
surrounded by ellipsis points. For instance:

4 box . t e x t { cap t ion =" Data (hex) " , t e x t = tg : dump{ width =2 , max=4 } }

gives you:

Data (hex)
3A 30 ...[13]... 0D 0A

Create your own template step by step
For the next steps we recommend you to load or double-click the project file
Tutorial.msbprj in the Examples\ProtocolView directory. The exam-

Tutorial
Tutorial.msbprj

ple also works without a connected analyzer and will show you every ongoing
step in the further template adaption at first hand.

The sample lesson contains a record of a simple protocol where each telegram
starts with a colon ’:’ and ends with CRLF as an End-Of-Frame delimiter. You
may already have discovered it in the pictured EOS box above (the data 013
010).
For this we can use the split function from the last section. Here is a remain-
der:

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 i f data == 58 then return STARTED end
3 i f s t r : f i n d (" \ r \ n ") then return COMPLETED end
4 return MODIFIED
5 end

The protocol also specifies the device address of the receiver, a function num-
ber, some data and a simple checksum. If it reminds you a little bit of the Mod-
bus ASCII you are right.
The project template is read-only, so you have to copy the template as a new
one by clicking the + button (open the editor first) and input a script name, for

95

KAPITEL 13. THE PROTOCOL VIEW

example ’MyTutorial’ or something else. Otherwise you cannot edit it.

At first we will add some color in our current telegram display for we want to
see the direction or source of every telegram. As usual we will show telegrams
received at Port A (CH1) in red and the data at Port B (CH2) in blue.
We already mentioned that a box has a foreground and background color pa-
rameter. Colors are passed as a RGB hex value like 0xAABBCC. The first byte
(AA) specifies the red part (between 0...255), the second byte (here BB) the
green part and the lowest byte (here CC) the blue part. For instance: black is
0x000000, white is 0xFFFFFF.
We will display all telegrams received at Port A with a red text on a light red
background. And the data on Port B as a blue text on a lightblue background.
Ok, here we go:

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 i f data == 58 then return STARTED end
3 i f s t r : f i n d (" \ r \ n ") then return COMPLETED end
4 return MODIFIED
5 end
6
7 function out ()
8 −− te legram co lo rs
9 local t e x t c o l o r s = { 0xFF0000 , 0x0000FF }

10 local backcolors = { 0xFFEEDD, 0xDDEEFF }
11
12 −− access the cu r ren t te legram
13 local tg = telegrams . t h i s ()
14
15 −− s e l e c t the t e x t and background co lo r depending on the data source
16 local f c = t e x t c o l o r s [tg : d i r ()]
17 local bc = backcolors [tg : d i r ()]
18
19 −− d i sp lay t ime
20 box . t e x t { cap t ion ="Time " , t e x t = tg : t ime () , fg=fc , bg=bc }
21
22 −− d i sp lay a l l data as hex
23 box . t e x t { cap t ion =" Data (hex) " , t e x t = tg : dump { } , fg=fc , bg=bc }
24 end

Line 9 defines a Lua table (or array) with two items for the text color, line 10 the
same for the background color.
In line 13 we query the telegram to display and assign it to the local telegram
variable tg.
The function tg:dir() returns the direction of the current telegram (1 or 2)
and the result is used to select the relating text and background from the two
color tables (line 16 and 17).
At last we just pass the two color values to all box calls (the box parameter fg
specifies the foreground, bg the background colour) and - voila - after pressing
F5 to execute the modification, the telegrams appear in two different colors.

Time
2.339189

Data (hex)
03A 030 032 030 032 043 034 00D 00A

Time
2.351468

Data (hex)
03A 030 032 030 032 030 046 031 035 036 041 034 032 037 044 00D 00A

The modifications will stored automatically every time you execute the template

96

13.4. TEMPLATE LANGUAGE SYNTAX

with F5.
Next we will highlight the starting colon ’:’ (hex 3A) and the End-Of-Frame se-
quence (CRLF). This will help us to see any variation in the telegram itself
caused by a telegram error.

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 i f data == 58 then return STARTED end
3 i f s t r : f i n d (" \ r \ n ") then return COMPLETED end
4 return MODIFIED
5 end

6 function out ()
7 −− te legram co lo rs
8 local t e x t c o l o r s = {0xFF0000 ,0 x0000FF }
9 local backcolors = {0xFFEEDD,0xDDEEFF}

10
11 −− access the cu r ren t te legram
12 local tg = telegrams . t h i s ()
13
14 −− s e l e c t the t e x t and background co lo r depending on the data source
15 local f c = t e x t c o l o r s [tg : d i r ()]
16 local bc = backcolors [tg : d i r ()]
17
18 −− d i sp lay t ime
19 box . t e x t { cap t ion ="Time " , t e x t = tg : t ime () , fg=fc , bg=bc }
20
21 −− s t a r t colon
22 box . t e x t { cap t ion ="SOF" , t e x t = s t r i n g . char (tg : data (1)) , bg=fc , fg=bc }
23
24 −− d i sp lay a l l data as hex
25 box . t e x t { cap t ion =" Data (hex) " , t e x t = tg : dump{ f i r s t =2 , l a s t =−3}, fg=fc , bg=bc }
26
27 −− end of frame CRLF
28 box . t e x t { cap t ion ="EOF" , t e x t = tg : dump{ f i r s t =−2}, fg=bc , bg= f c }
29 end

Line 22 calls a normal text box for the colon display. The caption or headline
is SOF (Start Of Frame). The text parameter is the first byte in the telegram
queried with tg:data(1). Instead of showing the value of the colon (hex 3A)
we output the value as a character with string.char(tg:data(1))4.
The end of frame sequence don’t need any transforming. We simply show the
CRLF as a separate box with an inverse coloring (line 28).
At last we have to adapt the position and size of the hex display in line 25. The
remaining data starts now at position 2 (the first byte is the colon), and ends
with the last byte before the CRLF, the third last byte or -3. The result is shown
in the following picture:

Time
2.339189

SOF
:

Data (hex)
030 032 030 032 043 034

EOS
00d 00a

Time
2.351468

SOF
:

Data (hex)
030 032 030 032 030 046 031 035 036 041 034 032 037 044

EOS
00d 00a

The data is displayed with always three digits. This is the default since the MSB-
Analyzer supports 9 bit data words.
In our example with don’t have 9 bit data, so we can reduce the data represen-
tation to two digits. With the parameter width we can pass another count of

4The string module is part of the Lua language.

97

KAPITEL 13. THE PROTOCOL VIEW

digits to the telegram dump function. Here the relating line 25:

25 box . t e x t { cap t ion =" Data (hex) " , t e x t = tg : dump{ f i r s t =2 , l a s t =−3,width =2} , fg=fc , bg=bc }

and the result on the example of the ’red’ telegram:

Time
2.339189

SOF
:

Data (hex)
30 32 30 32 43 34

EOS
00d 00a

Handle a base16 encoding
And now let us introduce some new things which go far beyond the abilities of
the former protocol view.
Our example protocol simulates some kind of a bus communication. The bus
consists of a sender and two devices which continuously read the temperature,
air pressure and humidity.
The sender (or bus master) queries each device randomly for one of these in-
formation. The value in the answer is coded as a floating point number. Except
for the starting colon and the ending CRLF all data bytes are sent as two ASCII
characters (hex ASCII or base16 format). For instance: The byte hex 0x5B is
encoded as two characters: 0x35 and 0x42 (0x35 = ’5’, 0x42 = ’B’ in ASCII).
Last but not least a simple checksum provides the integrity of the telegrams. A
single telegram looks like:

Start Address Function Data Checksum End

: 2 chars 2 chars 0 or 8 chars 2 chars CRLF

Please note: Queries have an empty data field!

In a first step we will convert the actual data from the base16 encoding back into
its origin binary sequence. This will ease the later handling of the information
packed in the telegram itself.
You can write a little Lua function to do this job, but the ProtocolView already
can offer you a helpful base16 module to handle such a coding in a flexible
way. The module is described in detail on page 114.
To get the representation of a base16 coded string, just pass the according
string to base16.decode(string) like this:

1 loca l tg = telegrams . t h i s ()
2 loca l bindata = base16 . decode (tg : s t r i n g () : sub (2 , −3))

tg:string() returns all bytes of the telegram as a Lua string.
The colon start character ’:’ and the end-of-string CRLF are not part of the
encoding. Therefore we must only decode the substring from the second byte
(position 2) to the third-last (position -3). To extract a certain sequence from a
string is a frequent application and the Lua string module offers an appropriate
function: sub(first,last).
Calling the sub function directly from the string variable (or object) via:
tg:string():sub(2,-3) is all we have to do.
Please note! Since Lua strings can only consist of normal bytes, any 9-bit infor-
mation is discarded. If you have to deal with 9-bit data, then you must access
the single data with the telegram function telegram:data(index).

98

13.4. TEMPLATE LANGUAGE SYNTAX

The result is assigned to the local variable bindata which we will use for ex-
tracting all further information. The content of the binary data representation is
thus:

Address Function Data Checksum

1 byte 1 byte 0 or 4 bytes 1 byte

You can query any byte of a Lua string with string:byte(index). The func-
tion works similar to telegram:data(index) and simply returns the byte
value on the given string position (index). To display the address and function
is easy to realize:

1 box . t e x t { cap t ion =" Address " , t e x t =b indata : byte (1) , fg=fc , bg=bc }
2 box . t e x t { cap t ion =" Function " , t e x t =b indata : byte (2) , fg=fc , bg=bc }

The checksum is the last byte in the binary sequence and it would be nice to
see the checksum in a hexadecimal notation. To do this, we pass the value to
the string belonging format function.

box . t e x t { cap t ion ="Chksum" ,
t e x t = s t r i n g . format ("%02X" , b indata : byte (−1)) , fg=fc , bg=bc }

As mentioned above: The example protocol distinguishes between a request
and a response. Only response telegrams contain an additional data field, en-
coded as a 4-byte floating point number.
Response telegrams are characterized by a length of totally 17 bytes (the ori-
ginal telegram with base16 encoding), or by a binary sequence of 7 bytes (ad-
dress=1 byte, function=1 byte, data=4 bytes, checksum=1 byte). To distinguish
it from a request, querying the size of the telegram or bindata length would be
enough. For instance:

1 i f tg : s i ze () == 17 then . . . end
2 i f #bindata == 7 then . . . end

It doesn’t matter which one you are choosing. But since we refer to the binary
data later in the response block, we use the second form. Here we go:

99

KAPITEL 13. THE PROTOCOL VIEW

1 function out ()
2 −− te legram co lo rs
3 local t e x t c o l o r s = { 0xFF0000 , 0x0000FF }
4 local backcolors = { 0xFFEEDD, 0xDDEEFF }
5
6 −− access the cu r ren t te legram
7 local tg = telegrams . t h i s ()
8 local bindata = base16 . decode (tg : s t r i n g () : sub (2 , −3))
9

10 −− s e l e c t the t e x t and background co lo r depending on the data source
11 local f c = t e x t c o l o r s [tg : d i r ()]
12 local bc = backcolors [tg : d i r ()]
13
14 −− d i sp lay t ime
15 box . t e x t { cap t ion ="Time " , t e x t = tg : t ime () , fg=fc , bg=bc }
16
17 −− s t a r t colon
18 box . t e x t { cap t ion ="SOF" , t e x t = s t r i n g . char (tg : data (1)) , bg=fc , fg=bc }
19
20 −− the address f i e l d
21 box . t e x t { cap t ion =" Address " , t e x t =b indata : byte (1) , fg=fc , bg=bc }

22 −− the f u n c t i o n number f i e l d
23 box . t e x t { cap t ion =" Function " , t e x t =b indata : byte (2) , fg=fc , bg=bc }
24
25 −− i s i t a response?
26 i f #bindata >= 7 then
27
28 −− d i sp lay the response data as hex
29 box . t e x t { cap t ion =" Data (hex) " ,
30 t e x t = tg : dump{ f i r s t =3 , l a s t =6 , width =2} ,
31 fg=fc , bg=bc }
32
33 end
34
35 −− the checksum byte i s always the l a s t byte i n b indata
36 box . t e x t { cap t ion ="Chksum" ,
37 t e x t = s t r i n g . format ("%02X" , b indata : byte (−1)) ,
38 fg=fc , bg=bc }
39
40 −− end of frame CRLF
41 box . t e x t { cap t ion ="EOF" , t e x t = tg : dump{ f i r s t =−2, width=2 } , fg=bc , bg= f c }
42
43 end

Line 26 checks if the telegram is a response. If so (the bindata sequence
contains at least 7 bytes), an additional data block is appended. An according
telegram would look like:

Time
2.339189

SOF
:

Address
2

Function
2

Checksum
C4

EOS
0D 0A

Time
2.351468

SOF
:

Address
2

Function
2

Data (hex)
0F 15 6A 42

Checksum
7D

EOS
0D 0A

Displaying the function as a number may be sufficient in most cases. But
wouldn’t it be not more convenient to replace the function number right with
a function call description, so you can easily understand the meaning of the
telegram? In our example protocol the functions are numerated as:

1 Temperature

100

13.4. TEMPLATE LANGUAGE SYNTAX

2 Moisture

3 Pressure

A Lua function to return a text string relating to the function number may look
like5:

1 function GetFunctionName (number)
2 local names = { " Moisture " , " Humidi ty " , " Pressure " }
3 return names [number]
4 end

Line 2 creates a Lua table (or array) with the three function descriptions. Becau-
se names is declared as local no other part of your code can access the table
except for the code within GetFunctionName. This avoids conflicts when you
have further names variables in other functions and therefore this should be
always the recommended procedure!
Lua indicates tables starting with 1. Line 3 returns the table entry according to
the given number parameter.

Lua allows you to put a function definition into another function. The functi-
on above can reside inside of out() but you can also place it somethere
else. As a rule use an inside definition only in case of small functions (like
the GetFunctionName) and write your additional functions outside of out()
otherwise.

1 function out ()
2 function i n s i d e ()
3 −− do something
4 end
5 −− c a l l the f u n c t i o n
6 i n s i d e ()
7 end

Ok, let us put the pieces together. The listing below shows the significant mo-
difications. We add the function GetFunctionName() just inside of out and call
the function with passing the function number in line 24.

1 function out ()
2
3 function GetFunctionName (number)
4 loca l names = { " Moisture " , " Humidi ty " , " Pressure " }
5 return names [number]
6 end
7
8 −− access the cu r ren t te legram
9 local tg = telegrams . t h i s ()

10 local bindata = base16 . decode (tg : s t r i n g () : sub (2 , −3))
11 . . .

23 −− the f u n c t i o n number f i e l d
24 box . t e x t { cap t ion =" Function " , t e x t =GetFunctionName (b indata : byte (2)) , fg=fc , bg=bc }
25 . . .
26 end

5We assume that the number parameter is always in a valid range.

101

KAPITEL 13. THE PROTOCOL VIEW

And that’s the result for the first two telegrams:

Time
2.339189

SOF
:

Address
2

Function
Moisture

Checksum
C4

EOS
0D 0A

Time
2.351468

SOF
:

Address
2

Function
Moisture

Data (hex)
0F 15 6A 42

Checksum
7D

EOS
0D 0A

The displaying of the function meaning is just an example to show you how to
convert several parts of a telegram in a more human readable information. You
can just as easy replace the address with a certain device name, but we are
now going to focus our attention to the data itself.

In the protocol specification we said before, that the devices respond with a
floating point value according to the received function number. These are va-
lues for the temperature, the moisture or pressure.
The floating-point format consist of four bytes in the bindata string (or eight
in the original telegram sequence). The picture above shows the four response
bytes in the Data (hex) box.
Our next task is to convert a sequence of bytes into a specific number.

Convert byte sequences into numbers
In dealing with protocols you will often have to transform a byte sequence to a
certain number; and there are various forms of numbers: Integer values can be
transmitted in two or four bytes, floating point numbers sent as four or eight by-
tes (double precision). And: Even the order of the transfered bytes matters. So-
me protocols put the most significant byte first on the line (Big Endian), others
the lowest (Low Endian).
Luckily the Lua interpreter comes with a mighty function to handle all the diffe-
rent types.

The function bunpack expects two mandatory parameters: The byte sequence
as a Lua string, and how to transform it as a second format string. An optional
third parameter specifies the position within the string, when the conversion
doesn’t have to start with the first character.
pos , val1 , . . . = bunpack (sequence , format , p o s i t i o n)

The function returns at least two values. The first one (here pos) indicates the
string position where the next conversion should take place. Then one or more
results are following, depending on the format parameter.
Before we go back to our tutorial, here are some examples which may give you
an idea how the bunpack works.

1 seq = " \248\036\001\000\154\153\045\065"
2 pos , i = bunpack (seq , "<L ")
3 pos , f = bunpack (seq , "< f " , pos)

Line 1 creates a byte sequence coded as single values in decimal notation. For
instance: A "\255" gives you a single hex FF byte, a "\104\101\108\108\111"
is the same as the string "hello". The decimal notation allows us to form any
sequence of bytes which we otherwise couldn’t input with an usual keyboard.

102

13.4. TEMPLATE LANGUAGE SYNTAX

The sequence above isn’t been chosen by chance.
The first four bytes represent the 32-bit integer value 75000 with the least signi-
ficant byte first (Little-Endian). The second four bytes are the binary imprint of
the number 10.85, also in Litte-Endian format (LE). The following table shows
the string in hexadecimal notation:

LE Integer 75000 LE Float 10.85

F8 24 01 00 9A 99 2D 41

1 Byte position 8

Now let’s see how the bunpack can provide us with the real numbers behind
this sequence. We start with the 32-bit integer:

2 pos , i = bunpack (seq , "<L ")

The first argument of the call bunpack is always a string. The second (format)
parameter "<L" specifies the kind of data, which we expect at the given po-
sition - passed as a third argument. Since the default position is equal to the
string start, we can leave it out.
The magic behind the bunpack resides in the format string. One certain letter
is assigned to one data type. A ’<’ or ’>’ in front of them defines the byte order.
A ’<’ stands for little endian, ’>’ means a big endian interpretation.
There are a lot of different types understandable by the format parameter. They
are listed in detail in the according section 13.7.

In our example above the format string "<L" indicates a ’long signed integer’
in little endian. bunpack returns the position of the byte after the decoded long
value. Here pos is 5 because the next value (the floating point number) starts
at position 5. The second result i is the long value 75000 itself.

The conversion in line 3 starts at the position returned in the former call. Since
the expected value is a floating-point number in little-endian order, we passed
a "<f" as format directive.

3 pos , f = bunpack (seq , "< f " , pos)

The outcome is again a pair of values. pos points to the ninth byte (the byte
following the floating point sequence) and f is the floating point value 10.85.
In our example the two data (long integer and float) directly following each
other. In such a case you can extract the data in one go and avoid passing the
position parameter again and again.

pos , i , f = bunpack (seq , "<L< f ")

Fantastic - isn’t it?
And since the ProtocolView allows you, to ’play around’ with the format para-
meter it becomes easy to check whether a certain sequence exists in a little
or big endian order, or if it contains an integer or floating point number. This is
particular in unknown or undocumented protocols a great advantage.

Ok, after this little excursion into data conversion let’s return to our tutorial. We

103

KAPITEL 13. THE PROTOCOL VIEW

already transformed the hex data of the telegram in a binary representation.
Remember, that a response telegram contains the requested value (passed as
the function number) as a floating point number. Here the response telegram
structure again:

Address Function Float Number Checksum

1 byte 1 byte 4 bytes 1 byte

The following lines summarize all modifications to the out() function so far:

1 function out ()
2
3 function GetFunctionName (number)
4 loca l names = { " Moisture " , " Humidi ty " , " Pressure " }
5 return names [number]
6 end
7
8 −− te legram co lo rs
9 local t e x t c o l o r s = { 0xFF0000 , 0x0000FF }

10 local backcolors = { 0xFFEEDD, 0xDDEEFF }

11 −− access the cu r ren t te legram
12 local tg = telegrams . t h i s ()
13 local bindata = base16 . decode (tg : s t r i n g () : sub (2 , −3))
14
15 −− s e l e c t the t e x t and background co lo r depending on the data source
16 local f c = t e x t c o l o r s [tg : d i r ()]
17 local bc = backcolors [tg : d i r ()]
18
19 −− d i sp lay t ime
20 box . t e x t { cap t ion ="Time " , t e x t = tg : t ime () , fg=fc , bg=bc }
21
22 −− s t a r t colon
23 box . t e x t { cap t ion ="SOF" , t e x t = s t r i n g . char (tg : data (1)) , bg=fc , fg=bc }
24
25 −− the device address
26 box . t e x t { cap t ion =" Address " , t e x t =b indata : byte (1) , fg=fc , bg=bc }
27
28 −− the f u n c t i o n number
29 box . t e x t { cap t ion =" Function " , t e x t =GetFunctionName (b indata : byte (2)) ,
30 fg=fc , bg=bc }
31
32 i f #bindata >= 7 then
33 −− i t i s a response
34 loca l next , value = bunpack (bindata , "< f " , 3)
35 box . t e x t { cap t ion =" Value " , t e x t =value) , fg=fgColor , bg=bgColor }
36 end
37
38 −− the checksum byte i s always the l a s t byte i n b indata
39 box . t e x t { cap t ion ="Chksum" ,
40 t e x t = s t r i n g . format ("%02X" , b indata : byte (−1)) ,
41 fg=fc , bg=bc }
42
43 −− end of frame CRLF
44 box . t e x t { cap t ion ="EOF" , t e x t = tg : dump{ f i r s t =−2 } , fg=bc , bg= f c }
45 end

The according line 34 should be readily comprehensible. In case of a response
telegram we extract the floating point number and display it in an additional text
box as value.

104

13.4. TEMPLATE LANGUAGE SYNTAX

The checksum validation isn’t yet part of our telegram display. We will look into
it later. You may also notice that we ’dump’ the EOS with a relative (negative)
index. Thus it’s easy to access the EOS bytes without passing the telegram
length. The output for the very first two telegrams is:

Time
2.339189

SOF
:

Address
2

Function
Moisture

Checksum
C4

EOS
0D 0A

Time
2.351468

SOF
:

Address
2

Function
Moisture

Value
58.520565032959

Checksum
7D

EOS
0D 0A

Compared with the first steps it’s a lot more understandable, isn’t it?
But we have not yet reached the finish line. There is still place for some impro-
vements. For instance: The floating point values are shown with a lot too much
digits. And it would be nice to validate the checksum.
Lua comes with an internal string module which offers you, beside other
string operations like search, replace and regular expressions, a string format
function similar to the printf in C.

35 box . t e x t { cap t ion =" Value " , t e x t = s t r i n g . format ("%.2 f " , value) }

string.format understands a lot of types and options, for more information
please refer to one of the Lua online manuals as listened at the end of the
chapter. Here we use the format string "%.2f" which formats the given floating
point value (’f’) with 2 fractional digits.
You can add an individual format string with the physical unit for each kind of
value as a little exercise. The solution is shown partially below:

1 function GetFunct ionValue (number , value)
2 local formats = { "%.2 f Deg" , "%.2 f %%", "%imBar " }
3 return s t r i n g . format (formats [number] , value)
4 end
5
6 i f #bindata >= 7 then
7 −− i t i s a response
8 local fnc = b indata : byte (2)
9

10 local next , value = bunpack (bindata , "< f " , 3)
11 box . t e x t { cap t ion =" Value " , t e x t =GetFunct ionValue (fnc , value) , fg=fc , bg=bc }
12 end

The code should be self-explanatory maybe accept for the "%.2%%" in line 2.
The percent sign is used as a placeholder for the given value. If you like to use
it as part of the output string, you have to quote it with a leading percent sign
or simply spoken use two of them.

Checksum validation
Last but not least we will finish the introduction of the template mechanism with
a checksum validation. Our goal is to display valid checksums in green and
invalid ones in a warning orange.
The protocol checksum is calculated by add up all bytes starting with the ad-
dress and ending with the last data byte. The colon and the CRLF are not part
of it. Carries have to be discard.
The checksum validation function looks like:

105

KAPITEL 13. THE PROTOCOL VIEW

1 function Checksum (data)
2 local sum = 0
3 for i =1 ,# data do sum = sum + data : byte (i) end
4 −− d iscard the c a r r i e s
5 return sum % 256
6 end

The checksum function is called with the byte sequence (string) we want to
summarize and returns the lower 8 bits of the sum.

1 loca l chksum = Checksum (tg : s t r i n g () : sub (2 , −5))

The colon isn’t part of the checksum as mentioned above. So we passed the
substring start position 2. Also the checksum itself (2 bytes) and the CRLF (al-
so 2 bytes) has to be excluded. Which means an ending substring position 4
bytes lesser as the telegram size or the fifth byte counted backwards.
Finally we compare the calculated and the read checksum and - depending on
the result - add a good or a bad checksum box.

1 loca l chksum = Checksum (tg : s t r i n g () : sub (2 , −5))
2
3 i f chksum == bindata : byte (−1) then
4 box . t e x t { cap t ion ="Checksum " , t e x t = s t r i n g . format ("%02X" , chksum) ,
5 fg =0xFFFFFF , bg=0x00cc00 }
6 else
7 box . t e x t { cap t ion ="CHKS ERR! " , t e x t = s t r i n g . format ("%02x " , chksum) ,
8 fg =0xcc0000 , bg=0 x f f f f 8 8 }
9 end

You will find the complete template in the examples\ProtocolView folder as
complete-sample.msbtml. The sample contains also one invalid checksum
in the third answer telegram to demonstrate the correctness of our checksum
validation.

Named parameters
A few additional words regarding the parameter passing. You may here noticed
that a lot function parameter follow the conversation:

parametername = value

This is not Lua typical but we decided that so called named parameters are
more convenient and even more understandable. And: you don’t have to worry
about the parameter order. For instance:

1 box . t e x t (" Func " , "Command" , 0xFFAAAA, 0x0000FF)

Without a look in the manual it’s hard to get the meaning - isn’t it? What’s the
caption, what’s the text color?
On the other hand the same code with named parameters:

1 box . t e x t { cap t ion ="Func " , t e x t ="Command" , fg =0xFFAAAA, bg=0x0000FF }

The meaning is obvious (although you have to remember that fg stands for
foreground color and bg means background color).
Please note: Named parameters are always included between an opening and
closing brace {...} because Lua sees the parameter as a table. Normally you
would have to write: function({...}) but the outer brackets are optional
here and you can forego them.

106

13.5. FILTERING

13.5 Filtering
Filtering of the data or telegrams is an often demanded feature. But how to filter
unknown types of telegrams? From the viewpoint of the program a predefined
list of filters doesn’t make many sense since every telegram has a very special
need of what you want to show (filter) and hide in the output.
For instance: You want to see only telegrams of bus participants with a certain
address or certain function. In this case the filter mechanism must be able to
extract and compare the address with the given filter parameter.
It is obviously that the filtering therefore has to be part of the template.

It’s now the appropriate time to introduce the last parameter in the split func-
tion. In case you don’t remember the call of the function. Here it is again:

1 function s p l i t (data , i nva l , a l t e r , s t r , f i l t e r)
2 −− you s p l i t code
3 return STATE
4 end

The filter parameter is just a text string containing the current selected item of
the filter control in the toolbar. But with it you can pass any desired data (as
a string) to the split function. The real filtering has to be done in the split
function itself.
You may comment, that the filtering is surely better in the out function. But the
out function only displays the visible telegrams. It cannot remove (filter out) a
single telegram without creating a discrepancy between the visible and availa-
ble telegrams. I.e. you can hide all telegrams but nevertheless the count of
telegrams is unchanged and the scrollbars will tell you that by scrolling through
an empty list.
As usual it is the best way to explain the filter mechanism with the aid of an
example. Load the tutorial project again and select the Tutorial-Complete tem-
plate. Copy the template with the [+] button so that you can modify it by yourself.

The tutorial record shows the communication with two devices. The first one
has the address 1, the second the address 2.
And now imagine you can simply list only the communication between the mas-
ter and the first device. Or showing the telegrams relating to a certain query,
for instance all requests and answers for the temperature.

To filter certain telegrams means to ’remove’ all of them you don’t want to see.
For this the split function can return the state REMOVED. First we will only
list the telegrams with the first device (address 1). To do this we have to sup-
press all telegrams to and from the second device. The address is coded as
two hex ASCII characters in the second and third byte of the telegram. Here -
for instance - the very first telegram as it is shown in the DataView:

3A 30 32 30 32 43 43 0D 0A :0202C4..

To detect a telegram with address 2 we just have to look for the string "02" on
the second position. In Lua formulated it is:

1 i f s t r : f i n d (" 0 2 ") == 2 then . . .

107

KAPITEL 13. THE PROTOCOL VIEW

Add the line in our split function and return the state REMOVED when the
condition is true (see line 3 in the following code).

1 function s p l i t (data , i n t v a l , a l t e r , s t r , f i l t e r)
2 i f data == 58 then return STARTED end
3 i f s t r : f i n d (" 0 2 ") == 2 then return REMOVED end
4 i f s t r : f i n d (" \ r \ n ") then return COMPLETED end
5 return MODIFIED
6 end

Now hit the F5 key (or click the execution button in the toolbar) - voila - all re-
maining telegrams show only the communication with the first device.
When you replace the string "02" with "01" the display lists only the telegrams
of the second device.
Nevertheless it is bothering to change the template all the time when you just
want to look for telegrams with the other address. Here’s where the filter para-
meter comes into place.
The filter control in the toolbar passes any inputed text string to the split
function as the filter argument. With this it becomes easy to set the address of
the not wanted devices. We only have to replace the address string "02" in line
3 with the filter parameter as shown in the following code.

1 function s p l i t (data , i n t v a l , a l t e r , s t r , f i l t e r)
2 i f data == 58 then return STARTED end
3 i f s t r : f i n d (f i l t e r) == 2 then return REMOVED end
4 i f s t r : f i n d (" \ r \ n ") then return COMPLETED end
5 return MODIFIED
6 end

Without a given input or in case of an unfitting address the REMOVED condi-
tion is always ignored and all telegrams are displayed in the telegram list. But
as soon as the filter control text matches the address of the current telegram
at position 2, split returns a REMOVED and the telegrams with the given
address will be hide in the display.

You can check your code afterwards by input a 01 in the filter control and press
Enter. All telegrams relating to the first device should disappear. Then change
the string in the filter control to 02 and hit the Enter key again. The remaining
telegrams show the address 01.
Now let us extend our little example and implement a filtering for the three
function codes:

1 Temperature

2 Moisture

3 Pressure

The function number is transmitted in the 4th and 5th data byte of the telegram.
The user should be allowed to select a certain function in the filter control. Only
telegrams containing that function should be displayed in the telegram window.
For instance:
In case of an input function number 1 (temperature) all telegrams according to
the moisture and pressure have to be REMOVED.

108

13.5. FILTERING

1 function s p l i t (data , i n t v a l , a l t e r , s t r , f i l t e r)
2 i f data == 0x3A then return STARTED end
3 i f f i l t e r == "1 " then
4 i f s t r : sub (4 , 5) == "02" or s t r : sub (4 , 5) == "03" then
5 return REMOVED
6 end
7 e l s e i f f i l t e r == "2 " then
8 i f s t r : sub (4 , 5) == "01" or s t r : sub (4 , 5) == "03" then
9 return REMOVED

10 end
11 e l s e i f f i l t e r == "3 " then
12 i f s t r : sub (4 , 5) == "01" or s t r : sub (4 , 5) == "02" then
13 return REMOVED
14 end
15 end
16 i f s t r : f i n d (" \ r \ n ") then return COMPLETED end
17 return MODIFIED
18 end

The code above filters all other telegrams except for that which was entered as
a number in the filter control. But sometimes it’s hard to remember the correct
function number. Especially when a more readable function name is provided
by the protocol.

In the next step we will improve the handling by adding predefined selection
strings in the filter control. We will introduce a special filters function to
you, which automatically fills the filter control with a specified list of entries.
The definition of that function is simple:

1 function f i l t e r s ()
2 return " Temperature , Moisture , Pressure "
3 end

The filters function must return a single text string whereas each item for
the filter control is separated by a comma. The first item appears at the top of
the selection list, the last at the bottom.
You can place the filters function at every point of the template script but
not within another function. We recommend to insert the function on the top of
the script.
As soon as a filters function is detected by the internal script engine it fills
the filter control with the items in the returning string. Here we get the items:
Temperature, Moisture and Pressure.

At least we change the REMOVED conditions in split and use the items
above instead of the simple function numbers. (You will find the complete tem-
plate as tutorial-complete-with-filtering.msbtml in the examples
folder).

With the changes in the template code below (see line 3, 7 and 11) the user is
able to select one kind of the telegrams in the filter control independent of some
function numbers. And since the filter mechanism is part of the template you
can provide every protocol template with an exactly matching filter handling.

109

KAPITEL 13. THE PROTOCOL VIEW

1 function s p l i t (data , i n t v a l , a l t e r , s t r , f i l t e r)
2 i f data == 0x3A then return STARTED end
3 i f f i l t e r == " Temperature " then
4 i f s t r : sub (4 , 5) == "02" or s t r : sub (4 , 5) == "03" then
5 return REMOVED
6 end
7 e l s e i f f i l t e r == " Moisture " then
8 i f s t r : sub (4 , 5) == "01" or s t r : sub (4 , 5) == "03" then
9 return REMOVED

10 end
11 e l s e i f f i l t e r == " Pressure " then
12 i f s t r : sub (4 , 5) == "01" or s t r : sub (4 , 5) == "02" then
13 return REMOVED
14 end
15 end
16 i f s t r : f i n d (" \ r \ n ") then return COMPLETED end
17 return MODIFIED
18 end

13.6 Export Telegrams
The MSB-RS485 program is well equipped for most analyzing intentions. Never-
theless there are situations when you have a need for processing the recorded
data - here the telegrams - with additional tools or external applications which
are specialized in certain things the analyzer software cannot handle.

The Protocol View supports an unlimited number of protocols thanks to the
ability to let the users write their own templates for displaying the telegrams.
But this also means that the exported data directly depends on the individual
templates.
The ProtocolView therefore uses an intelligent mechanism to share the tele-
gram information with other applications. In most cases the mechanism will
work out of the box. But it’s still good to know how the program determines
what information are suitable for the export. In particular when you intend to
use the telegram information in a spreadsheet application.

How the program determines the export fields
In the prior sections you learned all about the basic box model. Each box con-
sists of a indicating caption and the relating information. By labeling a certain
information you already assigned this data with a name. For instance:
You have a telegram field (or box) which shows the device address. It’s ob-
viously that you name the field as ’Address’ or likewise. And it is only logical
that you want to export the information (all telegram address fields) under the
same name.

The assignment caption="Field Name" in the template script therefore be-
comes the elementary part of the export mechanism. Every time you open the
export dialog, the program extracts all caption labels and handles them in an
internal list. The prefixes chosen in the settings dialog are put in front of the list.
Than the list is shown to the user who can select or deselect single or multiple
items.
Except for the prefixes (which were displayed always at the beginning) all ex-
tracted fields are listed alphabetically. This is due to the fact that the order of

110

13.6. EXPORT TELEGRAMS

the caption="..." assignments in the template script doesn’t say anything
about the relating field order in a telegram.
The actual export process is similar to the displaying of the individual telegrams
and only depends on the chosen export format.

1 Export as CSV
2 Export as HTML
3 Export as Text
4 Export as Latex

All selected telegrams are fed through the Lua interpreter. The script engine
assigns the data according to the caption name into the right column of the
CSV file or creates a HTML table cell with the same text and background color
as shown in the telegram itself. Not selected telegram fields are suppressed
and don’t show up in the export file.
Please note: Each export format serves a different purpose. In a CSV file every
possible field represents a column. But not every telegram is composed of all
fields. For instance: Some telegrams may consist of additional data fields, other
short telegrams are hardly resembling more than an acknowledge. All fields
(column items) which are not part of the current telegram are left with an empty
string "".
A HTML export on the other side is used to represent every telegram as shown
in the program window for documentation. For that reason the HTML export
creates a single HTML table for every telegram, whereas every table consists
of only that fields, which are part of the current telegram and were selected
formerly in the export dialog.

The export dialog
Before you start an export you have to select the wanted telegrams. Without a
chosen range of telegrams, the one marked by the cursor is used. The export
dialog is opened with Ctrl+E or by click on the export item in the file menu.
The dialog window presents you a list of all available telegram fields as well as
enabled prefixes and preselect all of them. You can disable respectively enable
each item singly. Or you select or deselect all in a single rush with click of one
of the two buttons below.
The default export format is CSV (comma separated values), but you can like-
wise use HTML as an output format.
After input a valid file name (the program default is the file telegrams with the
according extension on your desktop), the export starts as a parallel process.
You can always stop the export by clicking on the ’Cancel’ button on the left
side of the progress gauge in the status bar. And you can continue examining
the record while a longer running export is in progress.

Export as CSV file
Imagine you want to find the maximum time between a request and respon-
se. Or you are interested in some statistic about the frequency of telegrams
with a certain type. There are a lot of questions which are better handled by a
spreadsheet programs like Microsoft Excel R©, Open Office Calc or similar tools.
The ProtocolView therefore offers you an easy way to export all displayed in-
formation as a CSV file with comma separated values.

111

KAPITEL 13. THE PROTOCOL VIEW

All column values are quoted with quotations marks and can be easy imported
by most of all spreadsheet applications. The headline of the CSV file consists
of the column names as extracted from the caption assignments in the templa-
te script.
If you are interested only in a few data deselect all unnecessary fields to qui-
cken the export.

Export as HTML

Open Office Writer
with html telegram export

The HTML export is mainly intended for documentation purposes. The program
outputs the selected telegrams as a valid html document whereas every single
telegram is rendered as a html table, representing the telegram as shown in
the Protocol View window. This includes besides the data information also the
text and background color.
Most text processing applications are able to import such a html file. Open
Office user for instance can simply drag and drop the file into their documents
(see the example picture on the left side).

Export as text
This kind of export outputs the content of the selected telegrams as a sequence
of Label(VALUE) expressions. It comes into play when you want to use the
telegram information in a raw text environment or when you documentation/re-
port tool isn’t able to handle graphical objects. In contrary to the (also raw text)
CSV output, the text export of a telegram only contents the existing telegram
fields which makes it - under some circumstances - a lot easier to parse the
information for further processing. Here a short excerpt from a text export:

Src(Master) Dest(1) Fnc(Read Coils) Desc(Addr=0, Quantity=10) Cks(0DBC)
Src(1) Dest(Master) Fnc(Read Coils) Desc(Byte count=2) Data(00 00) Cks(FCB9)

Export as Latex
This format is mainly intended for users who prefer LATEX as their text documen-
tation system. Each selected telegram is exported as a tabular environment
whereas every box is represented by a table cell. The several cells are colo-
red like the boxes in the telegram window, using the additional LATEX packages
color, colortbl and xcolor.
Before inserting a exported telegram, make sure that you add these LATEX
packages with the following command at the beginning of your LATEX file:

\ usepackage { co lo r , c o l o r t b l , xco lo r }

You can switch on/off certain telegram fields before exporting them. But it is
also easy to remove unnecessary entries in the table later in the tabular
code.

Special notes about the caption labeling
We mentioned above: The export fields (columns in CSV) are named by the
caption assignment in the template box functions. As long as you are using
plain text and unique names the export results will look as expected.
But considering the following box with a composed caption label including the
current function number. (A more readable description of the function is dis-
played in the text variable).

112

13.7. PROTOCOLVIEW SPECIFIC LUA EXTENSIONS

1 box . t e x t { cap t ion ="Fnc (" . . tg : data (2) . . ") " , t e x t =GetFuncDesc (tg : data (2)) }

The displayed output may be something like this:

Func (8)
This is function 8

The export mechanism unfortunately cannot assemble the complete caption
label. For this it has to execute the template with all telegrams BEFORE it can
start the export itself. And: A lot of different Fnc(...) labels leads to a confusing
amount of different export field names when only one field (the function num-
ber) will be needed.
Remember: The export mechanism searches for assignments in the form of
caption="NAME". In the example above the extraction of the caption name
will give you "Fnc (" and discards the remaining expression. When your cap-
tion name starts with an evaluation, i.e. caption=tg:data(1).."-Typ" the
search for caption=" fails completely and therefore neither won’t be listed in
the export dialog nor exported at all.
The same occurs when you are using a variable for the caption. I.e.

1 l a b e l = "Chksum OK"
2 i f ChecksumTest () == fa lse then
3 l a b e l = "Chksum f a i l s "
4 end
5 box . t e x t { cap t ion= labe l , t e x t =GetChecksumByte () }

Also here the search for a pattern like caption="..." fails and both possible
caption labels won’t be added to the list of exportable fields.
Other effects may be less significant. Nevertheless it’s good to keep them in
mind. The extraction mechanism cannot understand whether the caption as-
signment is part of a out-commented section or in between a function which
happens to be never executed. In both cases the export dialog will show the
according field names. But this will give you at worst only empty records in a
CSV column.
So as a conclusion: Just avoid compounded expressions for the caption and
only use plain text for it!

13.7 ProtocolView specific Lua extensions
The following section covers all Lua modules, functions, extensions and data
types which are not necessarily part of the Lua language but especially imple-
mented or added for the ProtocolView. Lua offers - naturally - a lot more data
types, modules and functions which we - alas - cannot handle here.

base16 module : Encoding and decoding functions for base16 sequences (i.e.
used in Modbus ASCII and Intel SRecord).

box module : The box module is responsible to display the data of each tele-
gram.

bunpack function : Converts a given byte sequence in a certain number. The
bunpack function is part of the official Lua lpack library and firmly integrated
into the ProtocolView Lua interpreter.

113

KAPITEL 13. THE PROTOCOL VIEW

checksum module : Contains checksum algorithms for Modbus RTU (CRC16),
Modbus ASCII (LRC), BACNet (CRC8 and CRC16), DNP3 and CRC16 CCITT
(Kermit).

datetime module : The datetime module offers functions to output the tele-
gram time in a user specific format.

debug module : The debug module let you output debug information in the
debug window.

event module : The event module is only available in the split function and
gives you access to additional information of the current data event.

linestates module : With the linestates module you can check if a certain line
signal has changed or query the number of a given signal alternation.

protocol module : Returns information about the current baudrate, data bits,
parity and stopbits.

record module : Provides information about the record. For now only the start
time of the record and the used bus-wiring (MSB-RS485) are implemented.

shared module : The protocol template mechanism uses an independent Lua
interpreter for every data direction. The shared module let you share data bet-
ween both of them.

string.dump : Extents the original Lua string module with a hex/dec dump
functionality like the telegram relating dump function.

telegram type : A ProtocolView specific data type. The telegram type covers
all information about a single telegram.

telegrams module : The telegrams module gives you access to all occuring
telegrams up to the present time. The result is always a variable of the type
telegram. It replaces the tg and tgprev module which were limited to the cur-
rent and previous telegram. The telegrams module it is only accessible in the
out() function.

The several types, functions and modules in alphabetic order:

The base16 module
The base16 module provides you with two helpful encoding/decoding func-
tions when you have to deal with telegram data transmitted in base16 (hex
ASCII) format. This concerns in particular the Modbus ASCII protocol or SRe-
cord transmissions.

Function Description
decode Deciphers a base16 encoded data string and returns its binary

(original) content.
encode Converts a given Lua string to its base16 representation and

returns it as another string.

114

13.7. PROTOCOLVIEW SPECIFIC LUA EXTENSIONS

base16.decode
Converts the given base16 sequence back into its original binary represen-
tation and returns it as a string. The decoding will stop automatically when it
reaches the end of the passed string or when it encounters an invalid charac-
ter.

base16.decode(string)

• string: A base16 encoded data sequence.

Example

1 function out ()
2 −− e x t r a c t the b inary data o f a Modbus−ASCII te legram
3 local tg = telegrams . t h i s ()
4 −− A Modbus ASCII te legram s t a r t s w i th a colon ’ : ’ and ends wi th CRLF.
5 −− The data i n between (byte 2 . . . t h i r d l a s t) i s coded i n base16
6 local bindata = base16 . decode (tg : s t r i n g () : sub (2 , −3))
7 end

base16.encode
You wont normally make use of this function, since it converts a Lua string in
its base16 representation. Nevertheless there may exist situations in which you
like to see a binary sequence in a base16 encoding. I.e. if you like to compare
a given known string with a result received by the analyzer.

base16.encode(string)

• string: A Lua string which has to be converted into base16.

Example

1 function out ()
2 local seq = " h e l l o wor ld "
3 box . t e x t { cap t ion ="Base16 " , t e x t =base16 . encode (seq) }
4 end

Function bunpack
The function bunpack comes originally from the Lua lpack library and is a close
integrated part of the Lua interpreter in the ProtocolView. It provides you with
all necessary kind of transformations you need to convert any byte sequence
into a certain number type.
bunpack works like the scanf function in C. A given string or byte sequence
is translated in one or more numbers specified by an additional format string.
Since Lua functions are not limited to a single returning value, the conversion
results can be assigned to several variables in one step.
A third position parameter let you start a conversion from a different position
instead of the default first sequence byte.

pos , val1 , . . . = bunpack (sequence , format , p o s i t i o n)

115

KAPITEL 13. THE PROTOCOL VIEW

The following list shows the most important format/transform specifiers defined
by the bunpack function.

Format Description

b Interpret the next byte as a single unsigned byte (8-bit) value.

c Interpret the next byte into a single signed byte (8-bit) value.

d Convert the next 8 bytes into a double floating-point number (a
floating-point value with double precision or 64 bit).

f Interpret a series of 4 bytes as a floating-point number (32 bit).

H Convert the next 2 bytes into an unsigned short number (16 bit).

h Convert the next 2 bytes into a signed short number (16 bit).

L Convert a series of 4 bytes into an unsigned integer number (32
bit).

l Convert a series of 4 bytes into a signed integer number (32 bit).

> Interpret the sequence with the most significant byte first (big-
endian order).

< Interpret the sequence with the lowest significant byte first (little-
endian order).

bunpack(sequence, format, position=1)

• sequence: A Lua string which has to be extracted (unpacked) to one or
more numbers.

• format: The conversion format applied to the given sequence.

• position: The byte position where the conversion has to start. Default is
the first byte of the given sequence.

Example

Imagine a Modbus-RTU ’Write Single Register’ command. The structure of the
telegram is thus (byte sequence):

Dev Fnc Reg HI Reg LO Value HI Value LO CRC HI CRC LO

This Modbus telegram commands a device to write a 16 bit number into a given
register specified by its 16 bit address. The register address is in the 3th and
4th byte, the register value in the 5th and 6th. The last two bytes contain the
CRC16 checksum. The bytes are arranged in big-endian order.
With bunpack you are able to extract the register address, register value and
CRC16 in one single step:

116

13.7. PROTOCOLVIEW SPECIFIC LUA EXTENSIONS

1 function out ()
2 −− e x t r a c t the b inary data o f a Modbus−ASCII te legram
3 local tg = telegrams . t h i s ()
4 −− assume i t s a Wri te S ing le Reg is te r te legram
5 local pos , dev , fnc , reg , val , c rc = bunpack (tg : s t r i n g () , " bb>H>H>H" , 1)
6 end
7 end

The conversion starts with the first byte in the sequence (position 1) and inter-
prets the following bytes according to the instructions in the format specifier.
Finally the function returns the position of the byte next to the last conversion
and fills the remaining variables on the left side with the results.

Dev Fnc Reg HI Reg LO Value HI Value LO CRC HI CRC LO

B B >H >H >H

Don’t worry about too few variables on the left side. Lua takes care and only
assigns results to the existing variables. So the following code is also correct
but lacks of the CRC16 checksum value.
loca l pos , dev , fnc , reg , va l = bunpack (tg : s t r i n g () , " bb>H>H>H" , 1)

The box module
This module provides you with the necessary ’boxes’ you need when displaying
any content in the telegram window. The basic box is the ’text’ box. It allows you
to display any information (numbers, hex sequence, text) with a certain label
(caption) in a rectangular shape.
Each box can have it’s own individual text and background colors, passed with
the named parameters fg and bg. The default is a black text (and outline) on
a white background.
But you may find also the ’space’ box sometimes helpful in case you want to
set several boxes apart.

Function Description
box.space The space box inserts just an empty space with a width gi-

ven in characters or pixel.
box.text A common box with free definable caption, text content, fo-

reground color (text and outline) and background.

box.space
Inserts an empty space with a given width. Without a parameter a space of 10
pixel is used. You can specify the width as pixels or as a number of characters.
The latter respects the current font size (zooming) which means: The ’space’
grows with the font magnification.

box.space{ em=0, px=10 }

• em: the width defined as count of space characters the max count is 100.
• px: the width defined as pixel. The max width is 100.

Example

117

KAPITEL 13. THE PROTOCOL VIEW

1 function out ()
2 −− i n s e r t a smal l space wi th the width o f two space (blank) charac te rs
3 box . space { em=2 }
4 −− i n s e r t an empty space wi th the width o f 50 p i x e l
5 box . space { px=50 }
6 end

box.text
Display a common box with individual colors, caption and content string. The
size (width) of the box is automatically adapted to its content.

box.text{ caption=STRING, text=STRING [, fg=RGB, bg=RGB] }

• caption: a string displayed as caption.

• text: a string displayed as the data content.

• fg: Optional RGB color for the text and outline, default is black.

• bg: Optional RGB color of the box background, default is white.

Example

1 function out ()
2 box . t e x t { cap t ion =" Caption " , t e x t ="Some t e x t " , fg =0xFF0000 , bg=0xAADDFF }
3 end

The checksum module
The checksum module always comes in handy when your protocol uses one of
the following checksum algorithms listed below (more will be added in the next
future).
All functions of the checksum module expect a Lua string as parameter and
generate the checksum by iterating over all data in the string relating to the
selected algorithm. The checksum is returned as a integer number.
Please note that some applications use a different order of the 16 bit value.
Modbus RTU telegrams for instance transmit first the low byte of the crc16
checksum, then the high byte.
See also section 13.4 in case your checksum isn’t listed here and you have to
write it by yourself.

Function Description
checksum.crc8_bacnet the 8 bit checksum as used in the BACNet

(header) telegrams.
checksum.crc16_bacnet the 16 bit checksum as used in the BACNet

protocol.
checksum.crc16_ccitt_kermit calculates the crc16 checksum of the given

data string using another start value as used
in CCITT kermit.

118

13.7. PROTOCOLVIEW SPECIFIC LUA EXTENSIONS

checksum.crc16_dnp3 calculates the crc16 checksum of the given
data string as used in the DNP3 protocol. The
returning result is a 16 Bit value.

checksum.lrc returns the checksum of the given data string
calculated as Longitudinal redundancy check
(used in Modbus ASCII.

checksum.crc16_modbus calculates the Modbus RTU (CRC16) checks-
um of the given data string and return it as a
16 bit integer.

checksum.crc8_bacnet
A checksum algorithm for BACNet (header) telegrams. The result is a single
byte (8 bit value).

checksum.crc8_bacnet(String)

• String: the data as a string

Example

1 function out ()
2 cks = checksum . crc8_bacnet (te legrams . t h i s () : s t r i n g () : sub(1 ,−2))
3 box . t e x t { cap t ion ="Checksum " , cks }
4 end

checksum.crc16_bacnet
The crc16 checksum algorithm for BACNet telegrams. The result is a 16 bit
integer value.

checksum.crc16_bacnet(String)

• String: the data as a string

Example

1 function out ()
2 cks = checksum . crc16_bacnet (te legrams . t h i s () : s t r i n g () : sub(1 ,−3))
3 box . t e x t { cap t ion ="Checksum " , cks }
4 end

checksum.crc16_ccitt_kermit
Returns the CRC16 CCITT (Kermit) checksum of the given data string as an
integer.

checksum.crc16_ccitt_kermit(String)

• String: the data as a string

119

KAPITEL 13. THE PROTOCOL VIEW

Example

1 function out ()
2 −− the f o l l o w i n g code checks the content o f the e n t i r e message except
3 −− f o r the l a s t two byte (which are the checksum i t s e l f)
4 cks = checksum . c r c 1 6 _ c c i t t _ k e r m i t (te legrams . t h i s () : s t r i n g () : sub (1 , −3))
5 box . t e x t { cap t ion ="Checksum " , cks }
6 end

checksum.crc16_dnp3
Returns the CRC16 checksum according to the DNP3 specification of the given
data string as an integer.

checksum.crc16_dnp3(String)

• String: the data as a string

Example

1 function out ()
2 −− the f o l l o w i n g code checks the content o f the e n t i r e message except
3 −− f o r the l a s t two byte (which are the checksum i t s e l f)
4 cks = checksum . crc16_dnp3 (telegrams . t h i s () : s t r i n g () : sub (1 , −3))
5 box . t e x t { cap t ion ="Checksum " , cks }
6 end

checksum.lrc
A checksum mechanism based on a Longitudinal Redundancy Checking as
used in Modbus ASCII transmissions. The result is a single byte (8 bit value).

checksum.lrc(String)

• String: the data as a string

Example

1 function out ()
2 −− i n Modbus ASCII each byte i s sent as a two ASCII charac te rs but
3 −− the checksum i s ca l cu la ted before encoding the message . So we
4 −− must decode i t f i r s t w i th base16 . decode
5 local bindata = base16 . decode (telegrams . t h i s () : s t r i n g () : sub(2 ,−3))
6 cks = checksum . l r c (b indata)
7 box . t e x t { cap t ion ="Checksum " , cks }
8 end

checksum.crc16_modbus
Returns the Modbus RTU checksum of the given data string as an integer.

checksum.crc16_modbus(String)

120

13.7. PROTOCOLVIEW SPECIFIC LUA EXTENSIONS

• String: the data as a string

Example

1 function out ()
2 −− c a l c u l a t e s the checksum over the whole telegram except f o r the
3 −− f o r the l a s t two byte (which are the checksum i t s e l f)
4 cks = checksum . crc16_modbus (telegrams . t h i s () : s t r i n g () : sub (1 , −3))
5 box . t e x t { cap t ion ="Checksum " , cks }
6 end

The datetime module
The datetime provides you with a function to display the date and time of
each telegram in a very user special format.

datetime module functions

datetime.date
Format specifier

Displays the date and time of the telegram according to
the given format specifiers. The following format specifiers
are defined (each one starting with the ’%’ character):

%a abbreviated weekday name (e.g. Wed)
%A full weekday name (e.g. Wednesday)
%b abbreviated month name (e.g. Sep)
%B full month name (e.g. September)
%c date and time (e.g. 18/04/13 11:05:22)
%d day of the month (01-31)
%H 24-hour clock hour (00-23)
%I 12-hour clock (01-12)
%M minute (00-59)
%m month (01-12)
%p either ’am’ or ’pm’
%S second (00-61, considers leap second)
%w weekday (0-6 = Sunday-Saturday)
%x date (e.g. 18/04/13)
%X time (e.g. 11:05:22)
%Y full year (e.g. 2013)
%y two digit year (00-99)
%% the character ’%’

The date function based on the Lua os.time function and uses the same format
specifiers.

datetime.date
Returns the date and time of the given (telegram) time in a user specified for-
mat.

121

KAPITEL 13. THE PROTOCOL VIEW

datetime.date(format, time)

• format: a string specifing the format.

• time: the time in seconds since the Epoch (00:00:00 UTC, January 1,
1970), measured in seconds.

Example

1 function out ()
2 local tg = telegrams . t h i s ()
3 box . t e x t { cap t ion =" Date " ,
4 t e x t =datet ime . date ("%X %x " , record . s t a r t t i m e () + tg : t ime ()) }
5 −− r e tu rns something l i k e 08:50:44 16.04.2013
6 end

The debug module
The Protocol View contains a built in debug window which you can use to show
special information about the state of your script or the results of certain ope-
rations. The debug module covers all functions to output any text or value. You
can also suspend, resume or summarize the output in case of repeating mes-
sages. To open the output window for debug messages, just press Alt + D.

Debug window
with Alt + D

Function Description
debug.print Outputs the given arguments in the debug window. You

can pass as many arguments as you want. Each argu-
ment (text or value) must separated with a comma.

debug.resume resumes a former suspended output.
debug.summarize if activated the debug output collects all identical messa-

ges and show it only once with the repeating number.
debug.suspend stops (suspends) the debug output. All further de-

bug.print calls will be suppressed.
debug.timeprompt put the current time (hh:mm:ss) in front of each debug

output. You can enable or disable it by passing true or
false to the function.

debug.print
Output the given, comma separated, arguments in the debug window.

debug.print(param1,param2,...)

• param: comma separated list of parameters.

Example

122

13.7. PROTOCOLVIEW SPECIFIC LUA EXTENSIONS

1 function out ()
2 local tg = telegrams . t h i s ()
3 i f tg : s i ze () > 10 then
4 −− output the t ime and s ize o f the cu r ren t te legram
5 debug . p r i n t (" Time : " . . tg : t ime () , " Size : " . . tg : s i ze ())
6 end
7 end

Avoid heavy usage of the debug.print
Every output via debug.print takes some time and will slow down the executi-
on of your template script a little bit.

debug.resume
Continues the previously suspended debug output. Here we stop all debug-
ging after receiving a telegram with no hex 10 as a first byte and resume the
debugging when another telegram starts with hex 10 again.

debug.resume()

Example

1 function out ()
2 local tg = telegrams . t h i s ()
3 i f tg : data (1) == 0x10 then
4 −− f i r s t ou tput the debug message
5 debug . p r i n t (" Data : " . . tg : data (1) , " Size : " . . tg : s i ze ())
6 −− then suppress any other output
7 debug . resume ()
8 else
9 −− enable the debug output again

10 debug . suspense ()
11 end
12 end

debug.summarize
Collects all identical debug messages and output them when the first different
one occurs. The repeated messages are shown like this:

THE DEBUG MESSAGE
The previous message repeated n times.

n means the number of repetitions.
Usually you put a statement like debug.summarize(true) at the beginning
of your script, that is outside of the split() or out() function because there isn’t
any need to execute the command more than one a time. (See line 1 in the
example below).

debug.summarize()

Example

123

KAPITEL 13. THE PROTOCOL VIEW

1 debug . summarize (true)
2 debug . t imeprompt (true)
3
4 function s p l i t (data , i n t v a l)
5 i f i n t v a l > p ro toco l . b i tpause (33) then return STARTED end
6 return MODIFIED
7 end
8
9 function out ()

10 −− your output code . . .
11 end

debug.suspend
Suppress all debug output via debug.print till another call of debug.resume
is executed. See the resume example above for usage.

debug.timeprompt
Enable or disable an additional prefix with the current time for every debug
message when the output is done. The default is an output without any prefix.
If activated, each output is headed by the current time in the format hh:mm:ss.
For instance:

12:24:48: My debug message

See line 2 in the example above.

The event module
The event module provides you with additional data event information which
are not passed to the split function as parameter.
Please note! The event module is only accessible in between the split func-
tion body and cannot used in out().

Function Description
event.dir returns the source or direction of the current data.
event.isbreak returns true if the current byte is a break.
event.level returns the current signal level of the given line when the

data event occurred.
event.time returns the time stamp of data event in seconds since the

start of the record.

event.dir

Returns the direction or source of the current data event as an integer value
with the following result: 1: Port A (CH1), 2: Port B (CH2).

event.dir()

Example

124

13.7. PROTOCOLVIEW SPECIFIC LUA EXTENSIONS

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 local eos = 13
3 i f event . d i r () == 2 then eos = 10 end
4 i f # s t r == 1 then return STARTED end
5 i f data == eos then return COMPLETED end
6 return MODIFIED
7 end

event.isbreak
Returns true if the current byte is a break. A break is also received as a NULL
byte. With event.isbreak() you are able to distinguish between a normal
NULL byte and a real break. This function comes in handy i.e. when your pro-
tocol specifies a break as a delimiter.

event.isbreak()

Example

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 i f event . i sb reak () then return STARTED end
3 return MODIFIED
4 end

event.level
Returns the current signal level of the given line when the data event occurred.
The line is passed as a number from 1...8 according to the display in the control
program. Possible results are: 1: high level, -1: low level, 0: invalid/inactive.

event.level(signal=NUMBER)

• signal: signal or line number (1...8)

Example

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 −− the RI s i g n a l marks a spec ia l one byte broadcast te legram
3 i f event . l e v e l (8) == 1 then return STARTED+COMPLETED end
4 i f # s t r == 1 then return STARTED end
5 i f data == eos then return COMPLETED end
6 return MODIFIED
7 end

event.time
Returns the time stamp of the current data event in seconds since start of the
record. The result is a floating point number with microsecond resolution.

event.time()

Example

125

KAPITEL 13. THE PROTOCOL VIEW

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 −− remove a l l te legrams i n the f i r s t 5s o f the record
3 i f event . t ime () < 5.0 then return REMOVED end
4 i f # s t r == 1 then return STARTED end
5 i f data == eos then return COMPLETED end
6 return MODIFIED
7 end

The linestates module
By its design the split function doesn’t ’see’ events except for transmitted
data. If you need to know if a certain line like RTS or CTS has changed to
initiate a new telegram frame (e.g. to enable carrier modulation like some Radio
RTU producer do), you not only have to query the current line states when the
data byte arrives. You also have to check, if the specified line has changed
before. The linestates module comes to fill this gap.
Please note! The linestates module is only accessible in between the split
function body and cannot used in out().

Function Description
linestates.changed(signo) returns true if the given line (signo 1...8) has

changed since the last call.
linestates.count(signo) returns the number of changes of the given line

signo (1...8).

linestates.changed
Returns true if the given signal number (line) has changed since the last call.
The signal number is counted from 1 to 8 and meets the sequence as shown
in the control program display.
A signal alternation is always detected when a signal changes its tri-state level.
This includes not only changes from high to low but also changes from valid to
invalid and visa versa.

linestates.changed(signo)

• signo line (signal) number.

Example

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 local RTS = 6
3 local CTS = 7
4 i f event . d i r () == 1 then
5 i f event . l e v e l (RTS) == 1 and l i n e s t a t e s . changed (RTS) then
6 return STARTED
7 end
8 else
9 i f event . l e v e l (CTS) == 1 and l i n e s t a t e s . changed (CTS) then

10 return STARTED
11 end
12 end
13 return MODIFIED
14 end

126

13.7. PROTOCOLVIEW SPECIFIC LUA EXTENSIONS

linestates.count
Returns the number of line changes of the given line or signal number since
start of the record. The signal number is counted from 1 to 8 and meets the
sequence as shown in the control program display.
A signal alternation is always detected when a signal changes its tri-state level.
This includes not only changes from high to low but also changes from valid to
invalid and visa versa.

linestates.count(signo)

• signo line (signal) number.

Example

1 rtsChanges = 0
2 function s p l i t (data , i n t v a l , a l t e r , s t r)
3 local RTS = 6
4 i f l i n e s t a t e s . count (RTS) > 5 then
5 rtsChanges = 0
6 return STARTED
7 end
8 return MODIFIED
9 end

The protocol module
Every time you need information about the currently used protocol, for instance
the baud rate, the number of data bits, the parity settings, the protocol module
will come in handy.

Function Description
protocol.baudrate Returns the baud rate used in the current recor-

ding.
protocol.bitpause(bits) This function returns the time which is needed

to send the given number of bits. Profibus for
instance uses a pause of 33 bits as a telegram
delimiter.

protocol.bytepause(bytes) This function returns the time which is needed
to send the given number of bytes. Modbus RTU
for instance uses a byte pause of 3.5 byte as a
telegram delimiter.

protocol.databits Queries the used number of data bits. The result
is a value in the range 5...9.

protocol.parity Returns the parity setting of the current recor-
ding as following: None = 0, Odd = 1, Even = 2,
Mark = 3, Space = 4.

127

KAPITEL 13. THE PROTOCOL VIEW

protocol.baudrate
Returns the baudrate as used in the current record.

protocol.baudrate()

Example

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 −− s t a r t a new telegram a f t e r a pause of 33 b i t s
3 i f i n t v a l > 33 / p ro toco l . baudrate () then
4 return STARTED
5 end
6 return MODIFIED
7 end

protocol.bitpause
Returns the necessary time to send the number of the given bits.

protocol.bitpause(bits)

• bits number of paused bits.

Example

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 −− Pro f ibus s p e c i f i e s a pause of 33 b i t s as a telegram d e l i m i t e r
3 i f i n t v a l > p ro toco l . b i tpause (33) then
4 return STARTED
5 end
6 return MODIFIED
7 end

protocol.bytepause
Returns the necessary time to send the number of the given bytes.

protocol.bytepause(bytes)

• bytes number of paused bytes.

Example

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 −− Modbus RTU s p e c i f i e s a pause of 3.5 bytes as a telegram d e l i m i t e r
3 i f i n t v a l > p ro toco l . bytepause (3.5) then
4 return STARTED
5 end
6 return MODIFIED
7 end

128

13.7. PROTOCOLVIEW SPECIFIC LUA EXTENSIONS

protocol.databits
Returns the number of data bits (word length) as used in the current record.

protocol.databits()

Example

1 function output ()
2 local tg = telegrams . t h i s ()
3 i f p ro toco l . d a t a b i t s () > 8 then
4 −− d iscards the 9 th b i t and and uses a warning red background
5 box . t e x t { cap t ion ="9 B i t " , t e x t = tg : data % 256 , bg=0xFF0000 , fg =0 }
6 else
7 box . t e x t { cap t ion ="8 B i t " , t e x t = tg : data }
8 end
9 end

protocol.parity
Please note! This function returns the specified parity settings of the record,
not the parity bit of an individual byte.

protocol.parity()

Example

1 function out ()
2 i f p ro toco l . p a r i t y () ~= 2 then
3 −− do something when p a r i t y i s not even
4 box . t e x t { cap t ion =" Warning " , t e x t ="We need an even p a r i t y " }
5 return
6 end
7 end

The record module
The record let you query information about the record, for now only the record
start time and the bus-wiring are accessable.

record module functions

record.buswiring returns the selected bus wiring.
0 : 2-Wire-Tap, 1 : 2-Wire-Segment, 2 : 4-Wire-Tap,
3 : 4-Wire-Segment

record.starttime returns the start of the record in seconds since the Epoch
(as used in the datetime module).

record.buswiring
Returns the current bus-wiring as set in the bus wiring dialog (only MSB-
RS485) or as it was stored in a reloaded record.

record.buswiring()

129

KAPITEL 13. THE PROTOCOL VIEW

Example

1 function out ()
2 local tg = telegrams . t h i s ()
3 i f record . buswi r ing () == 1 or record . buswi r ing () == 3 then
4 −− we can use the tg : d i r () to d i s t i n g u i s h between request and response
5 end
6 end

record.starttime
Returns the seconds since the Epoch (00:00:00 UTC, January 1, 1970).

record.starttime()

Example

1 function out ()
2 local tg = telegrams . t h i s ()
3 local datet ime=datet ime . date ("%X %x " , record . s t a r t t i m e () + tg : t ime ()) }
4 −− r e tu rns something l i k e 08:50:44 16.04.2013
5 end

The shared module
The protocol mechanism uses two Lua interpreter to split the incoming data
stream into individual telegrams. One for every data direction.
Therefore you never have to worry about the right source of the passed data
parameter. Also the internal representation of the already received bytes (given
as str) always relates to one data source.
Using two independent Lua interpreters makes the operation of the template
function much easier. But it has one pitfall:
Despite the fact, that you can create variables outside of the split function,
you nevertheless cannot use them to share an information between the two
Lua interpreters since they work totally independent of each other.
If you have a need to share data between the split function called by data
source A and the second one called when a byte of source B arrives, than the
shared module comes into play.
All variables put into the shared module are accessible from both interpreters.
You can create such a variable for instance when a certain byte on port A
arrives and query its content when handling data on port B.

Function Description
shared.get returns the content of the global variable with the given

name.
shared.set store the variable with the given name.

shared.get
Returns the global variable with the given name or nil if no variable with this
name exists

130

13.7. PROTOCOLVIEW SPECIFIC LUA EXTENSIONS

shared.get(name)

• name: The name of the variable as a Lua string.

shared.set
Create a new variable with the given name and assign the value to it. If the
variable already exists, its content will be overwritten.

shared.set(name, value)

• name: The name of the variable as a Lua string.

• value: Any Lua value (number, boolean, string).

The following code uses a imaginary protocol. Every telegram starts with a
colon ’:’ and ends with LF. Consider a special telegram used as a ’life ping’.
In our example we like to hide every ’life ping’ AND the relating response. To
make the whole matter a little bit more complicated, the response to a ’life ping’
has to be the same as to other requests.
A ’life ping’ is specified as an empty telegram, which means a colon ’:’ followed
by a LF.
To distinguish a ’life ping’ response from other identical responses we have to
memorize a ’life ping’ telegram, for instance received on port A.
In case of a later response we than check the memorized state to show or hide
the according telegram. Here is the code:

Example

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 i f data == 58 then return STARTED end
3 i f data == 10 then
4 i f shared . get (" L i f eP ing ") then
5 return REMOVED
6 end
7 i f # s t r == 2 then
8 shared . set (" L i f eP ing " , true)
9 return REMOVED

10 else
11 shared . set (" L i f eP ing " , fa lse)
12 end
13 return COMPLETED
14 end
15 return MODIFIED
16 end

The example above seems a little bit constructed, but it serves our purpose
how to use the shared module to exchange information between the two Lua
interpreters.
Line 2 just triggers the start of a new telegram (58 is the decimal ASCII value
of the colon) . A received LF (decimal 10) marks the end of the telegram (line
3). We then have to check for a ’life ping’ telegram, which means the shared
variable LifePing was set to true (line 4). Returning REMOVED in this case
hides the telegram from being displayed.
In line 7 we test for every ’life ping’ telegram (length is 2 bytes) and set the
global LifePing to true or false. In case of a ’life ping’ the telegram has to be

131

KAPITEL 13. THE PROTOCOL VIEW

REMOVED (line 9). Otherwise the telegram state is COMPLETED (line 13).
All other data bytes are added to the internal telegram representation by retur-
ning MODIFIED.

Please note! The code above will not work by using a normal Lua global value
instead of the shared module since every interpreter of the according data di-
rection uses his ’own’ global values. The shared module is the only possibility
to shared data between both interpreters.

The string dump extension
This function let you ’hex dump’ the content of any Lua string. The function
works similar to the telegram:dump, but since it is not assigned to a certain
telegram, it allows you to hex dump for instance also the results of a base16
conversion.

string.dump
Creates a string summarizing (hex dump) of the string data as 2-digit hex or
3-digit decimal values separated by a specific character. The default number
base is hex (16) and the default separator is a space.

Please note! string.dump isn’t part of the common Lua language and only
works within the ProtocolView.

string.dump(str, base, sep)

• str: The Lua string you want to hex dump.
• base: The used number base, default is hex (base 16).
• sep: Replaces the default space separator with any character or string.

An empty string suppresses the separator completely.

Example

1 function out ()
2 −− access the cu r ren t te legram (a Modbus ASCII te legram)
3 local tg = telegrams . t h i s ()
4 −− conver t the telegram content i n i t s b ina ry rep resen ta t i on
5 local bindata = base16 . decode (tg : s t r i n g () : sub(2 ,−3))
6 −− show the complete telegram content as hex dump
7 box . t e x t { cap t ion =" Data (hex) " , t e x t = s t r i n g . dump(b indata) }
8 −− or i n a more ob jec t o r i e n t a t e d manner , dec output and ’ : ’ separa tor
9 box . t e x t { cap t ion =" Data (hex) " , t e x t =b indata : dump(bindata , 10 , " : ") }

10 end

The telegram type
The data type telegram maps the telegram properties of a very particular
telegram in the record. It is always the result of accessing one of them via the
telegrams module (notice the plural in the module name).
You can query every property by calling the telegram’s related function in an
object oriented manner. An additional dump method provides a quick overview
of the whole telegram content.

132

13.7. PROTOCOLVIEW SPECIFIC LUA EXTENSIONS

Function Description
data Returns the data as a 9 bit value at the given position. You can

address a certain data from the beginning with positive indexes
(1 means the first data) or with negative indexes backwards (-1
accesses the last data).

datatime Returns the timestamp of the given telegram data byte in se-
conds with microsecond precision. The indexing of the data by-
tes is the same as with function data above.

dir Queries the direction or source of the telegram. Returns 1 when
the telegram was received at Port 1, or 2 otherwise (Port 2).

dump Returns a Lua string with a hexadecimal or decimal list of all or
a given range of the telegram data. dump comes in handy when
you need a quick insight of the telegram content or in case you
just want to display a certain range of data.

duration Provides the time length or duration of the telegram in seconds.
This means the time between the first start bit and the last stop
bit.

isbreak Returns true, if the data byte at the given position is a break.
number Queries the telegram number, the result is counting from 1.
size Returns the data size or length of the telegram. Please note:

The data may consist of 9-bit values which are also counted as
one data byte.

string Returns the telegram content as a Lua string. Since a Lua string
cannot cover 9-bit values, possible existing 9-bit values are re-
duced to 8-bit.

time Returns the time when the telegram was received in seconds
with micro second precision. For instance: A value of 25.034198
means a telegram received 25.034198 seconds after starting
the record.

telegram:data

Returns the data value at the indexed position of the telegram. Indexes starts
from 1 as usual. Negative index values address the data from behind. Because
the MSB-RS485 also supports 9 bit value, the return value is in the range of
0...511.

telegram:data(INDEX)

• INDEX index of the requested byte.

Example

133

KAPITEL 13. THE PROTOCOL VIEW

1 function out ()
2 −− access the cu r ren t te legram
3 local tg = telegrams . t h i s ()
4 −− shows the f i r s t byte i n the telegram as decimal value
5 box . t e x t { cap t ion =" F i r s t " , t e x t = tg : data (1) }
6 −− shows the l a s t byte i n the telegram as decimal value
7 box . t e x t { cap t ion =" Last " , t e x t = tg : data (−1) }
8 end

telegram:datatime
Returns the data timestamp of the indexed telegram data byte. Indexes starts
from 1 as usual. Negative index values address the data from behind.

telegram:datatime(INDEX)

• INDEX index of the requested byte.

Example

1 function out ()
2 −− access the cu r ren t te legram
3 local tg = telegrams . t h i s ()
4 −− shows the pause between the stop b i t o f the f i r s t byte and the
5 −− s t a r t b i t o f the second byte (subs t rac t sending t ime)
6 local delay = tg : datat ime (2) − tg : datat ime (1) − p ro toco l . bytepause (1)
7 box . t e x t { cap t ion ="Pause 1−2", delay }
8 end

telegram:dir
Queries the telegram direction or source. A value of 1 means the telegram was
received at Port 1, a value of 2 marks a telegram from Port 2.

telegram:dir

Example

1 function out ()
2 −− access the cu r ren t te legram
3 local tg = telegrams . t h i s ()
4
5 i f tg : d i r () == 1 then
6 −− do something wi th data form por t A
7 else
8 −− te legram received at po r t B
9 end

10 end

telegram:dump
Creates a string summarizing (hex dump) of a given range of telegram data as
3-digit hex or decimal values, separated by a specific character. Without any
argument, the whole telegram content is used. The default number base is hex
(16) and the default separator is a space.

134

13.7. PROTOCOLVIEW SPECIFIC LUA EXTENSIONS

telegram:dump{ first=1, last=-1, base=16, width=3, sep=’ ’, max=LEN }

• first: Specifies the first data used in the hex dump, default is the first data
in the telegram (1).

• last: Specifies the last data used in the hex dump, default is the final data
of the telegram (-1 or telegram:size()).

• base: The used number base, default is hex (base 16).
• width: The number of digits used for the data output, default is 3 digits

(to support also 9 bit values). In most case you will pass width=2 when
using the hexadecimal notation.

• sep: Replaces the default space separator with any character or sting.
An empty string suppresses the separator completely.

• max: Limits the maximum count of data in the hex dump. A given values
of max=4 outputs only the first two and last two data values and displays
the remaining data as a quantum value. The default value is equal to the
telegram length (LEN).

Example

1 function out ()
2 −− access the cu r ren t te legram
3 local tg = telegrams . t h i s ()
4 −− show the complete telegram content as hex dump
5 box . t e x t { cap t ion =" Data (hex) " , t e x t = tg : dump { } }
6 −− shows the l a s t two bytes as hex w i thou t separa tor and 2 d i g i t
7 box . t e x t { cap t ion ="EOS" , t e x t = tg : dump{ f i r s t =−2, width =2 , sep = ’ ’ }
8 −− shows the second byte as a decimal value
9 box . t e x t { cap t ion ="Second " , t e x t = tg : dump{ f i r s t =2 , l a s t =2 , base=10 }

10 end

telegram:duration
Returns the telegrams time length or duration in seconds. The duration time is
defined as the difference between the start bit of the first and the stop bit of
the last transmitted byte. The result is a double precision floating point number
with the usual resolution of one micro second.

telegram:duration()

Example

1 function out ()
2 −− access the cu r ren t te legram
3 local tg = telegrams . t h i s ()
4 −− d i sp lay the du ra t i on o f the telegram
5 box . t e x t { cap t ion =" Length (s) " , t e x t = tg : du ra t i on () }
6 end

telegram:isbreak
Returns true, if the data (null) byte at the indexed position of the telegram is a
break.

135

KAPITEL 13. THE PROTOCOL VIEW

telegram:isbreak(INDEX)

• INDEX index of the requested byte.

Example

1 function out ()
2 −− access the cu r ren t te legram
3 local tg = telegrams . t h i s ()
4 −− d i s t i n g u i s h between a normal n u l l byte and a break
5 i f tg : data (1) == 0 then
6 i f tg : i sb reak (1) then
7 box . t e x t { cap t ion ="BREAK" , t e x t = tg : data (1) }
8 else
9 box . t e x t { cap t ion ="NULL" , t e x t = tg : data (1) }

10 end
11 end
12 end

telegram:number
Queries the number of the telegram. The telegram numbers are counted from
1 (the very first received telegram).

telegram:number()

Example

1 function out ()
2 −− access the cu r ren t te legram
3 local tg = telegrams . t h i s ()
4 −− show the cu r ren t te legram number
5 box . t e x t { cap t ion ="Number " , t e x t = tg : number () }
6 end

telegram:size
Queries the size of the telegram. Please note that also a 9 bit value in a tele-
gram is counted as one item.

telegram:size()

Example

1 function out ()
2 −− access the cu r ren t te legram
3 local tg = telegrams . t h i s ()
4 −− show the s ize o f a telegram
5 box . t e x t { cap t ion =" Length " , t e x t = tg : s ize () }
6 end

telegram:string
Returns the complete telegram data as a Lua string.
A Lua string can contain any byte in the range 0...255 but only 8 bit values. If

136

13.7. PROTOCOLVIEW SPECIFIC LUA EXTENSIONS

the telegram consists of 9 bit values, the ninth bit will be discard.
In contrary to the earlier tg and tgprev modules, telegram.string() sim-
ply returns the whole telegram data as a Lua string without accepting any sub-
string defining parameters.
Since it’s easier to leave the relating substring functionality to the Lua string
module, there isn’t any reason to implement it again. And: Since Lua allows the
indexing of substrings from the end, it has additional advantages.

telegram:string()

Example

1 function out ()
2 −− access the cu r ren t te legram
3 local tg = telegrams . t h i s ()
4 −− e x t r a c t the bytes 2 . . . 5 as a Lua s t r i n g
5 local data = tg : s t r i n g () : sub (2 ,5)
6 −− query the l a s t two EOS bytes
7 local eos = tg : s t r i n g () : sub(−2,−1)
8 end

telegram:time
Returns the time stamp of the telegram which is the measured time of the
first received byte in seconds since starting the record. The result is a double
precision floating point number with the usual resolution of one micro second.

telegram:time()

Example

1 function out ()
2 −− show the response t ime to the former telegram
3 local t c = telegrams . t h i s ()
4 local tp = telegrams . prev ()
5 −− handle not e x i s t i n g prev ious telegram (a t very f i r s t p o s i t i o n)
6 i f not tp then
7 tp = t c
8 end
9 box . t e x t { cap t ion ="Response t ime " , t e x t = t c : t ime () − tp : t ime () }

10 end

The telegrams module
The telegrams module provides you with an easy method to access any te-
legram recorded up to the current time. The big advance: In contrary to the
obsolete tg and tgprev modules the access isn’t only limited to current and
former telegram. By using the telegrams module your are now able to handle
the active telegram in the out() function depending on the data/state of any
telegram occurring before6.

6Up to now the out() function could only handle the current and previous telegrams by using the
modules tg and tgprev.

137

KAPITEL 13. THE PROTOCOL VIEW

For instance: You have to treat a telegram in a different way when one of the
former telegrams was of a certain type. Since it often isn’t just the former or
penultimate telegram, you need a way to ’iterate’ through the prior telegrams
and looking for the according telegram.

Quering any recorded telegram is simply done by calling the module function
telegrams.at(index) whereas index refers to the telegram you want to ac-
cess.
The value (or object) returned by the function telegrams.at is always of ty-
pe telegram (see 13.7). This type acts as an interface and provides the same
functions as you are accustomed from the former tg or tgprev modules.
The telegrams.at(index) function is the only one you ever need. But sin-
ce the access to the current and previous telegram is the most widely-used
operation, the module offers two alias functions for these. The following table
lists all module functions:

Function Description
telegrams.at returns the telegram at the given index/position.
telegrams.this returns the current telegram handled by the out function.

It is an alias for telegrams.at(-1).
telegrams.prev returns the previous telegram handled by the out functi-

on. The same like telegrams.at(-2).

telegrams.at
The telegrams.at(index) function accepts absolute and relative indexes
and returns the relating telegram - or nil if you pass an invalid index.
The effort is always linear and it makes no difference to query the actual or the
very first telegram of the record.
Absolute addresses starts with an index of 1 (first telegram) up to the current
telegram number. A relative address can be -1 (the last or current telegram as
used in the obsolete tg module) or any other negative value. An index of -2
returns the previous telegram (and makes the tgprev obsolete), an index of
-3 accesses the telegram before the previous one and so on.
Since the out() function always handles ONE telegram (one telegram line in
the telegram window) every call, a relative indexing is more convenient because
you don’t have to worry about the right ’absolute’ index number.

telegrams:at(index)

• index: The index of the requested telegram. A positive index counts from
the beginning of the record, a negative counts backwards from the current
handled telegram in out().

Examples

138

13.8. SETTINGS

1 function out ()
2 −− query the cu r ren t te legram
3 local te legram = telegrams . a t (−1)
4 −− show the telegram time
5 box . t e x t { cap t ion ="Time " , t e x t =telegram . t ime () }
6 end

The next piece of code calculates the time distance of the current telegram
(index -1) relating to the previous one (index -2). Instead of storing the returned
telegram value as a local variable, we use them directly to access the wanted
information. Here is the code:

1 function out ()
2 −− show the t ime d i f f e r e n c e between the cu r ren t and prev ious telegram
3 box . t e x t { cap t ion =" d t " ,
4 t e x t =telegrams . a t (−1): t ime () − te legrams . a t (−2): t ime () }
5 end1

13.8 Settings
The settings dialog provides you with several options, i.e. a list of predefined
telegram prefixes (number, date/time, etc.), an individual telegram font, another
background color for the telegram window and a Lua compatibility switch.
Click on Settings→Configure Protocol monitor... to open the set-
tings dialog.

Show additional telegram information
Although you can put any desirable information in front of a telegram by yourself
it’s easier to simply enable or disable the wanted facts just by some clicks.
The prefix settings dialog let you select one or more of the following information
which then are displayed in front of every telegram.

1 Telegram number
This is the actual number of the telegram count from 1 and independent of the
telegram source.

2 Telegram time
The time stamp of the first byte of the telegram relative to the record start in
seconds.

3 Telegram date and time
The absolute time and date of the telegram occurrence. Time and date are
shown in your local time format (depending on your PC settings) with an addi-
tional microsecond part.

4 Telegram duration
This is the length of the telegram in seconds (with microsecond resolution),
measured from the first start bit to the last stop bit.

5 Time distance to the former telegram
The ’pause time’ between the last and current telegram. It is the time between
the last stop bit bit of the former telegram and the first start bit of the current
telegram.

Every selection acts directly on the telegram display.

139

KAPITEL 13. THE PROTOCOL VIEW

Change the font
Altering the font effects the display of the boxes. You can choose a smaller font
when you want to see more data in a line or a bigger one for a more comfortable
viewing. Open the settings dialog and click the font icon in the head line.
The font dialog offers you to select an individual typeface, font style and size.

Telegram font
All changes are applied immediately to the telegram window and are stored
automatically.

Change font via mouse and keyboard
There exists a more directly way to adapt the font size to your preference
without using the settings dialog. Press the Ctrl key and scroll the mouse
wheel. Or just hit the Ctrl+ + or Ctrl+ − to increase or decrease the font

size. Ctrl+ 0 switches back to the default size.

Set an individual background
The template script let you only influence the color settings of the telegram via
the box model. When you like to adapt the background of the whole telegram
window, click the color button and select a color of your choice. This color
becomes the new background.

Background color Lua compatibility
To provide the best possible protocol handling it’s sometimes inevitable to change
Lua functions and names at the expense of downward compatibility. We don’t
do this flippantly and we only break with former versions when the benefits are
outstanding. In such a case we will give you the chance to adapt your own tem-
plates as painless as possible.
The Lua interpreter accepts obsolete functions by default for a while. When
you are willing to update your templates, just disable the compatibility switch
in this dialog. The ProtocolView then points you to all lines in your code that
it cannot accept any longer. See section 13.11 for a detail overview about the

Lua compatibility
now obsolete functions and modules.

13.9 The Toolbar
The toolbar serves for a fast access to the most used functions. Some are
identical in all monitor windows, some others are only specific for the protocol
monitor.

A End: Saves all settings and closes the window.

B Display mode: According to the mode the window either shows always
the current (last recorded) event or locked or actualizes its content syn-
chronous to the other windows.

140

13.11. OBSOLETE FUNCTIONS AND MODULES

C Data direction: The protocol monitor can display both data directions
(Data channel A and Data channel B) combined or separately to display
them in different windows.

D New view: Opens a new window with the same sector and settings.

E Apply template: Applies the current template on the available data.

F Filter control: Select and pass any text to the split filter parameter.

13.10 Short commands

Short commands
for the most important
functions

Action Short command

Online help for the Protocol view F1

Apply template F5

Open the template manager Ctrl + M

Show telegrams in a new window Ctrl + N

Save current template Ctrl + S

Load template from file and apply Ctrl + O

Open and close template editor Ctrl + T

Select all protocol or editor lines Ctrl + A

Reverse selection Shift + Ctrl + A

Export selected lines Ctrl + E

Search text in the editor Ctrl + F

Search and replace text in the editor Ctrl + H

Fold/unfold functions in the editor Ctrl + L

Increase the current telegram font (zoom in) Ctrl + +

Decrease the current telegram font (zoom out) Ctrl + −

Switch back to the default telegram font size Ctrl + 0

Open the colour chooser dialog Ctrl + Alt + C

Open the debug output window Ctrl + Alt + O

Save settings and close protocol view Ctrl + Q

13.11 Obsolete functions and modules
With the beta-release 4.1.9 several functions and modules become obsolete
and they will be removed finally in the next release 4.2.0. This section will be
a guidance how to update your templates by replacing obsolete code with the

141

KAPITEL 13. THE PROTOCOL VIEW

more powerful new functions and modules7.
In the beginning the list of obsolete modules:

tg - Access the current telegram in function out

tgprev - Access the previous last telegram in function out

hex - Provides a hex ascii to binary/numbers conversions from the current
telegram
box.hexdata - Display part of the current telegram data as hex dump

You may ask what’s wrong with them?
The weakness in the design is the mixup of pure output or conversion modules
(box and hex module) with an fixed telegram access, emphasized as current.
The hex module as well as the box.hexdata can ONLY process the current
telegram. You cannot hex dump a previous telegram and you won’t able to con-
vert hex ascii coded data from other telegrams except for the current one. In
both cases you have to write your own Lua code to achieve a similar functiona-
lity when not handling the current telegram.
Furthermore: tg and tgprev limit the processing in the out function to the
current and previous telegram. As soon as you have to examine more prece-
ding telegrams you are lost.

The new telegrams module put an end to this limitation and provides you
with a random access to all telegrams currently received while executing the
out function. As a logical step the successor of the box.hexdata and hex
module throw off the tg dependency and they are now also capable to handle
arbitrary telegrams.

In the following we will explain how to update the display code of the Modbus
ASCII telegram ’Write Single Register’. The telegram consists of the parts:

: Addr Func RegHi RegLo ValHi ValLo LRC CR LF

1 char 2 chars 2 chars 2 chars 2 chars 2 chars 2 chars 2 chars 1 char 1 char

Except for the starting colon ’:’ and the ending mark CRLF all telegram data
are transmitted in hexadecimal 0-9, A-F (hex ASCII coded). Here an example
byte sequence as shown in the DataView:

3A 30 31 30 36 30 30 31 39 30 33 33 45 39 46 0D 0A

A former solution using the obsolete modules would look like:

1 box . t e x t { cap t ion =" S t a r t " , t e x t = s t r i n g . char (tg . data (1)) }
2 box . t e x t { cap t ion =" Addr " , t e x t =hex . byte { pos=2 } }
3 box . t e x t { cap t ion ="Func " , t e x t =hex . byte { pos=4 } }
4 box . t e x t { cap t ion =" Reg is te r " , t e x t =hex . i n t 16 { pos=6 , order ="BE " } }
5 box . t e x t { cap t ion =" Value " , t e x t =hex . i n t 16 { pos=8 , order ="BE " } }
6 box . t e x t { cap t ion = ’ ’LRC’ ’ , t e x t = s t r i n g . format ("%02X" , hex . byte { pos= tg . s i ze () −3}) }
7 box . hexdata { cap t ion ="End " , pos= tg . s i ze ()−1 , len =2 , width =2}

Our first objective is to replace the tg module and to convert the hex ascii
characters (the green and yellow sections) into their binary representation.

7The protocol templates and examples are already adapted and may serve as a first instance.

142

13.11. OBSOLETE FUNCTIONS AND MODULES

1 loca l t e l e = telegrams . t h i s ()
2 loca l bindata = base16 . decode (t e l e : s t r i n g () : sub (2 , −3))

Line 1 queries the current telegram and assign it to the variable tele which
now contains the same information as when accessing the tg module. But in
contrary to tg the variable could also refer to any other telegram.
In line 2 we pass the section (substring) of the green and yellow bytes starting
with the second byte (index 2) and ending with the third last (index -3) to the
base16 decode function. The result is a binary sequence of the green and yel-
low bytes.
Please note! You cannot convert the whole telegram into binary because the
colon start byte as well as the CRLF are no valid hex ascii characters!

With the binary data at hand there isn’t any further need to convert the different
parts of the telegram like address, function, register, value or LRC checksum
from hex ascii. The function bunpack in line 3 provides a much easier way to
extract the information in one step.

1 loca l t e l e = telegrams . t h i s ()
2 loca l bindata = base16 . decode (t e l e : s t r i n g () : sub (2 , −3))
3 loca l pos , adr , fnc , reg , val , l r c = bunpack (bindata , " bb>H>Hb ")

bunpack is instructed to ’unpack’ the given sequence or string according to
the passed format string "bb>H>Hb". The translated meaning is:

1 return ALWAYS the end of the parsing (pos)
2 return the first character as byte (b) (adr)
3 return the second character as byte (b) (fnc)
4 return the 3th and 4th byte as an unsigned 16 bit value (H) with most significant

byte first (>) (reg)
5 return the 5th and 6th byte as an unsigned 16 bit value (H) with most significant

byte first (>) (val)
6 return the 7th byte as byte (b) (lrc)

At least six results are returned. The first one is always the position where the
unpacking stopped. This is equate to the position where you perhaps want to
continue with another bunpack call.
Line 3 simply collects the results in the according variables and we can display
them without any further processing.

1 loca l t e l e = telegrams . t h i s ()
2 loca l bindata = base16 . decode (t e l e : s t r i n g () : sub (2 , −3))
3 loca l pos , adr , fnc , reg , val , l r c = bunpack (bindata , " bb>H>Hb ")
4 box . t e x t { cap t ion =" Addr " , t e x t =adr }
5 box . t e x t { cap t ion ="Func " , t e x t = fnc }
6 box . t e x t { cap t ion =" Reg is te r " , t e x t =reg }
7 box . t e x t { cap t ion =" Value " , t e x t =va l }
8 box . t e x t { cap t ion ="LRC" , t e x t = s t r i n g . format ("%02X" , l r c) }

The remaining parts are the start ’:’ character and the CRLF end sequence.
The colon is the first byte in the original telegram tele and we can handle it
similar to the obsolete coding. See line 4 in the listing below.
The new telegram:dump function replaces the restricted box.hexdata in

143

KAPITEL 13. THE PROTOCOL VIEW

line 10. dump belongs always to a prior assigned telegram and doesn’t access
the tg internally.

1 loca l t e l e = telegrams . t h i s ()
2 loca l bindata = base16 . decode (t e l e : s t r i n g () : sub (2 , −3))
3 loca l pos , adr , fnc , reg , val , l r c = bunpack (bindata , " bb>H>Hb ")
4 box . t e x t | cap t ion) " S t a r t " , t e x t = s t r i n g . char (t e l e : data (1))
5 box . t e x t { cap t ion =" Addr " , t e x t =adr }
6 box . t e x t { cap t ion ="Func " , t e x t = fnc }
7 box . t e x t { cap t ion =" Reg is te r " , t e x t =reg }
8 box . t e x t { cap t ion =" Value " , t e x t =va l }
9 box . t e x t { cap t ion ="LRC" , t e x t = s t r i n g . format ("%02X" , l r c) }

10 box . t e x t { cap t ion ="End " , t e x t = t e l e : dump{ f i r s t =−2, width=2 } }

13.12 Lua References
Lua is free available and well documented. You will find a lot or sources, ex-
amples and documentations in the world wide web. A good (if not to say the
best one) is the Lua website at:

http://www.lua.org

A direct link to the original Lua manual for version 5.1 (including the C API) is
here:

http://www.lua.org/manual/5.1/

144

http://www.lua.org
http://www.lua.org/manual/5.1/

14
The Signal View

The MSB-RS485 Analyzer samples all signals with up to 16 MHz.
The result displays the signal monitor. Analogous to a digital
scope you can select any sectorand examine in different
magnification levels.

For analyzing of serial data streams it is sometimes not sufficient to watch the
transmitted data bytes.
Especially bus systems need a smooth interaction of all components. This re-
quires a correct parameterization and strict observance of the protocol specifi-
cations by all bus participants. The possible error reasons are manifold.

By wrong settings or a malfunctioning hardware invalid data can be set onto
the bus.
Occurring data collisions by multiple simultaneously active senders (Bus blocking
/unblocking) or invalid data sequences (frames), caused by wrong timing, can
not be judged only by recording the data. The same applies for the hardware
handshakes.

All by the MSB-RS485 recorded lines are displayed in parallel, whereby each
line signal can be individually switched on and off and the sequence of their
display can be varied. The function of the signal client is that of a 8 channel
digital scope. In the opposition to a scope the recording depth (Record depth)
and the duration of the recording is limited only by the disc capacity and com-
puting power of your PC.
By opening of multiple signal clients you can check the recorded signals at dif-
ferent places with different time resolution. Aside that the signal client is also
well suited to judge the response time of sent data bytes. In the easiest case
the signal client shows level changes of an active data connection and provides
important hints for the function or malfunction of the connection.

145

KAPITEL 14. THE SIGNAL VIEW

14.1 Signal representation
The signal display is divided into 3 sectors. Directly below the toolbar the cur-
sor bar is located (look Cursor) and the timeline. The timeline provides you with
the exact position and resolution of the visible signal section. To ease the the
readout all times displays are shortened by removing unnecessary prefixes. So
0.012570s changes to 12.57ms.
Below the timeline the signals are displayed. For all signals the same sector
and the same resolution applies (time base). To examine a signal at different
positions simply start a new signal client. You can duplicate the actual client
by pressing the ’Clone’ button in the toolbar. By this a new signal client will be
started which has exactly the same settings like the actual one. Or you start a
signal client with default settings from the control program.

Compare different signal sections
Different signal regions can be examined through multiple signal clients. Just
open as many as you wanted.

Each visible signal is described by its name at the left border. The signal
name is set before the recording in the preference dialog of the control pro-
gram. The sequence in which the signals are displayed can be set in each
signal client individually. That makes it possible to arrange important signals
directly on top of each other. Unimportant signals can be fade out. All signal
specific settings are done in the Settings dialog, which is opened from the
Options→Preferences menu.

146

14.2. NAVIGATION

Individual signal settings
Signal sequence, visibility, resolution and color are set in the signal dialog!

The visible signal region is defined by its position as time difference from the
beginning of the recording and its visible sector. The visible sector is derived
from the size of the window counted in screen pixel and the time base, that
means how many microseconds are displayed per Pixel. The greater the time
base the bigger is the time window of the signal sector.
To get a complete overview over the recorded events select ’View total’ from
the ’View’ menu or press Ctrl+Pos1. The Timebase is automatically choosen so
that all events can be seen at the same time. Depending on the selected time
base multiple events could have occurred in one screen pixel. The signal client
draws a vertical line instead of a single pixel to mark this time. The following
image shall make this behaviour clear:

Timebase 0.5ms

Timebase 50µs

Timebase 10µs

All three pictures apply to the same signal, but displayed with decreasing time
resolution.

14.2 Navigation
The scroll bar below the signal windows represents an overview over the posi-
tion and size of the displayed sector in comparison to the complete signal. The
slider size of the scroll bar represents the size, the slider position the offset of
the displayed sector.
Beside that the scroll bar allows to navigate through the complete signal. The
arrows at the left and right border scroll the signal sector in grid or in 10 grid
steps. Or the sector can be moved with the slider. Also the signal can be moved
with the arrow keys, look Shortcuts.
Position and zooming (Time base) are displayed in the two left status boxes.
Below the scroll bar you see a slider, with which you can vary the signal hight
of all signals. Normally you will not need this function. It is useful if you can not
read the displayed name of a Region when it is hidden by the signal. In this
case simply decrease the signal hight.

147

KAPITEL 14. THE SIGNAL VIEW

Navigation by mouse wheel
The navigation by mouse wheel offers a way to shift the signal. Keep the Ctrl
key pressed while turning the wheel. Depending on the turning direction the
signal is shifted to the right or to the left in 10 grid steps. If the ctrl key is not
pressed the signal is zoomed or unzoomed.

Shift with the hand cursor
The hand cursor allows the pixelwise shifting of the signals. click on the hand
symbol in tool bar. The cursor changes to a hand symbol. To move the signal
to the right or to the left simply grip the signal by pressing the left mouse key
and drag the signal in the desired direction. Keep the mouse key pressed. while
gripping the signal the cursor has the look of a griping hand.

14.3 The time base
The time base correspondends to the magnifying for the represented signal.
The smallest time base is 10µs, that means 10 microsecs per raster and means
1µs per displayed pixel. One raster grid is 10 pixel wide. The signal is magni-
fied, for a screen resolution of 1024 it is about 1 millisecond (if you have maxi-
mized the signal monitor window).
If the level changes are in the milisec or second range you will chosse a higher
timebase to watch a larger section of the signal. By clicking of the two magnify-
ing glass symbols in the toolbar the time base is set to the next higher or lower
value. The same can be done by using the key combination Ctrl+Up Arrow and
Ctrl+Down Arrow.
You also can magnify a certain sector of the signal by selecting the sector with
a pressed left mouse key. Move the mouse cursor to the beginning of the sector
and press the left mouse key. Hold the key pressed and move the cursor to the
end of the section. A rectangle marks the current selection. As soon as you
release the mouse key the section is displayed magnified.

14.4 Undo and Redo
All magnifications can be taken back (undo) or redo after an undo.
By that you can magnify an interesting signal section, for example to place a
cursor exactly, and go back to the original view, simply ba clicking on the undo
symbol in the toolbar or entering Ctrl+Z.
The original view before an undo is recalled by redo. Both symbols are marked
as inactive if no further undo/redo steps are possible. Undo and redo are used
only for section magnifying. A normal increasing/decreasing of the signal is
possible at every time so that no undo redo is necessary.

14.5 Settings dialog
In the setup dialog you can adapt the signal display to your needs in broad ran-
ge. This applies to the number of displayed signals as well as to the sequence
and color. Aside that the performance of the display can be influenced.
From Version 2.1.1 you can additionally fade the recorded data bytes (receive
and send data) in into any signal to compare them with the physical signals.

148

14.5. SETTINGS DIALOG

The signal dialog
In the signal dialog all available signals are listed and their actual settings are
displayed. The signal with blue background is the actual selected one. First you
have to select a signal with your mouse then you can change its attributes.

Visibility and grid can be swtiched on or off by clicking the respective symbol.
To change the colors of a signal click the signal symbol on the right side. In
the opening color dialog you can select signal color, background color and grid
color from 72 colors.
Choose your favored color and clock on the corresponding button for paper,
signal and grid to actualize the color. The changes are directly actualized in the
signal client so that you can see immediately the changes you have made.
If the changes are ok accept with ’Ok’ while ’cancel’ restore the old settings.

Save your color settings
Don’t worry about your color settings. All properties will be saved automati-
cally after close the dialog and will be present also for future sessions.

Choose your favorite
colors

Signal inverting
Each signal can individually be inverted. By default the representation is as
recorded by the analyzer, symbolized by a buffer symbol. Click with your mouse
onto this symbol to invert the display. The signal is now mirrored horizontally.
In the table now an inverted driver symbol appears.
Please note, that this inverting applies to the display only.

Signal sequence
The Signal sequence is freely definable. At first select the signal whose position
you want to change. Then move the signal with the keys ’Up’ and ’Down’ of the
signal dialog. The setting directly apply to the signal client so that you can
check the settings immediately.
The key ’Defauls’ cancels your changes and resets the colors to default values.

Fade in the transfered data

Fade in data byte (Data
channel B) with Parity
error

Independent of the recording of the physical signals you can fade in the trans-
fered data bytes into any signal. You only have to activate the recording of

149

KAPITEL 14. THE SIGNAL VIEW

RxData and TxData in the control program. The display is done as a data block
with the hex value of the data byte.

Grafical effects
The display of the selected range and fade in region was made as background
color. This had some disadvantages.

Abbildung 14.1: Overlapped regions,
(a) is on the bottom, followed by (b)
and (c) on the top. See also the section
about regions without any transparen-
cy.

Depending on the selected display
colors the selected range or region
was hardly to see. Additionally the
start and end of overlapping region
could not be seen.
With introduction of transparent ran-
ges for selection and regions the dis-
play is now independent of the co-
lors for signal, grid and background.
Selection and regions now appear
transparent and allow a more user fri-
endly inspection and marking of si-
gnals.
However, transparent display has
a disadvantage. They are not for
free and cost additional performance.
That should not be an issue on mo-
dern PCs and is limited to the display
of regions only. If the performance degree is too obvious you can switch the
transparent display of in the setup dialog (effects), separated for selection and
regions. You also can adjust the transmittance of the tranparent ranges.

14.6 Cursor operating
Every signal client owns 2 Cursors I and II which can be moved arbitrarily over
the signal inside the visible range. To move a cursor click on the respective
cursor symbol, an upside down triangle above the timeline, and draw the cursor
line to the wanted position. If both cursors are on the same position you can
see only the last activated one because it overlays the other cursor. But in this
case always Cursor I will be activated. To move the second cursor keep the
SHIFT button pressed while clicking the cursors. Now you can move cursor II
while Cursor I stays at its place.

Cursor selection
With pressed SHIFT key the second cursor is activated if both cursors are at
the same postion!

Placed cursors keep their signal specific position even if you choose another
signal view. Cursor outside the visible signal window are displayed at the left
or right border. Their actual position can be read in the status line. c1 means
cursor I and c2 cursor II.
In addition to the position of each cursor their time difference is fade in in

the status line. So a time difference measurement is easily posible, e.g. the

150

14.7. SYNCHRONIZING

duration of an active line.
To compare multiple sectors you can assign the marked signal sectors to a
region. Click the ’Add Region’ Button in the toolbar. A maximum of 8 regions
can be defined. The range between both cursors gets colored. Read more
about regions in chapter Regions.
You can also move both cursors at the same time, for instance to compare
the duration of two signal changes which did not occur at the same time. Both
cursors are connected by pressing ’c1+c2’ in the toolbar.
As long as this key is activated both cursers are moved simultanously, all the
same which one you move.

Signal selection
The sector between both cursors represent the current selection at any time.
You do not have to make another selection. Since both cursors do not change
their position in relation to the signal, the position and distance beween them
stays the same, even if the signal view is changed. Both are displayed in the
status line.
All operations, which are related to the current selection, always concern the
signal range between both cursors.
To define a region click on the ’+’ Symbol in the toolbar or press Key F4.

Regions
Analogous to the other monitors regions have a colored background.
The picture shows two regions, where the light blue one is framed by the two

Signal regions
marks interested sections

cursors and assumedly selected by them. Because regions are superordinated
and valid for all analysis windows, selected signal sectors can be marked and
examined with different tools at the same time.
The red-yellow triangle in the cursor bar is the current Synchronizing Event,
received from another analysis window.
You can find more information at P.155.

14.7 Synchronizing
Each analysis window can synchronize its view with others.
How the signal monitor acts on receiving of the sync signal from other analysis
tools depends on the sync selector in the toolbar, identical for every analysis
tool.
By default, the display of the signal monitor is locked, it does not react on
change commands from other tools. Click on the ’Sync’ symbol and a red-
yellow triangle appears in the cursor bar which marks the position of the current
synchronizing event.
If you switch on the ’Scroll’ Symbol the signal monitor always shows the last
event resp. level change.
The signal monitor not only reacts on sync-changes from other tools but can
also trigger a sync event itself... For that click in the signal view the right mouse
key (context menu) to open the sync. menu. The entries are more or less self
explaining.

1 Synchronizing on Cursor 1
Synchronized is on the first event after the cursor 1 position.

151

KAPITEL 14. THE SIGNAL VIEW

2 Synchronizing on Cursor 2
Synchronized is on the first event after the cursor 2 position

3 Synchronizing the display
As the synchronizing event the current signal sector is used. That means the
first level change seen from the left border.
Why is the first event after the cursor position used and not the cursor position
itsself?
Synchronization is only on events not on a certain time in the signal. As the
cursor can be between two events (in contrary to other tools) the next following
event has to be taken for synchronization.

14.8 The toolbar
The toolbar serves for a fast access to the most used functions. Some are
identical in all monitor windows, some are specific for the protocol monitor.

A End: Save all settings and close the signal monitor window.

B Display mode: According to the mode the window either shows always
the current (last recorded) event or locked or actualizes its content syn-
chronous to the other windows.

C New view: Opens a new window with the same sector and settings.

D Mouse control: Optionally the mouse can be used to zoom the selection
or to move the signal (hand symbol).

E Signal zooming: Magnifies or demagnifies the visible section in 1, 2, 5
multiplicative factors by choosing the next lower or higher time basis.

F Undo/Redo: Undoes the last change of the visible section or restores it
respectively.

G Add region: Saves the range between both cursers as a new region.

H Interlock Cursor: The cursors can be selectively moved singly or to-
gether (combined).

I Show region dialog: Opens the region dialog, e.g. to fade in or off re-
gions, to delete them or to name them.

152

14.9. SHORT KEYS

14.9 Short keys

Short commands
for the most important
functions

Action Short command

Online help for the Signal View F1

Undo last selection/zooming operation Ctrl + Z

Redo last selection/zooming operation Ctrl + Y

Add range between cursors as new region F4

Move view 1 raster towards signal end Right arrow

Move view 1 raster towards signal start Left arrow

Move view 10 raster towards signal end Shift + Right arrow

Move view 10 raster towards signal start Shift + Left arrow

Move signal horizontal Shift + Mouse wheel

Zoom in signal Ctrl + +

Zoom out signal Ctrl + −

Zooming in/out at mouse position Ctrl + Mouse wheel

Signal total view Ctrl + Home

Jump to first event Home

Jump to last event End

Open in a new window Ctrl + Shift + N

Save settings and close signal view Ctrl + Q

153

KAPITEL 14. THE SIGNAL VIEW

154

15
Regions

To save and quickly recover interesting areas in the recorded
data these areas can be marked as regions. Regions are present
in all views so that a region, marked in the data monitor is shown
in signalmonitor too. Regions can directly accessed.

Regions are selected Ranges which are shown in all analysis windows. Each
window can define a selected range as a region and make it available to other
windows. Since the different analysis tools represent different kinds of data
views each region can be defined in a different way. A region can be defined in
the signal monitor as the selection of a certain signal sector, in the data monitor
as a certain data sequence or as the occurence of single characters.
This interaction is interesting if you want to examine a defined section in a
different view, for example the physical signal state (signal monitor) of a data
sequence (data monitor).
As soon as you add a selected range as a region this one is attached to the list
of available regions.
Regions are part of each recording and therefor are saved with them self-
acting.

The MSB software allows the definition of 8 regions. Every region can be indi-
vidually named and optionally switched on and off. With exception of the line
state monitor you open the region dialog with View→Region dialog in every
analysis window. An always opened region window will be put in front of all
windows automatically.
The picture above shows a region dialog with all together 6 regions where re-
gion nr 2 with the name first request is switched off and therefore not shown in
the other analysis tools (indicated by a closed eye).

155

KAPITEL 15. REGIONS

15.1 Switch regions on/off
Each region can be individually fade in or out. This is reasonable if some re-
gions overlap in the display and make an assignment difficult. To alter the vi-
sibility condition of a region simply click onto the eye symbol at the very left
side. An open eye symbolizes a visible region, a closed eye a fade out region
respectively.

15.2 Remove a region
Delete deletes the current in the region dialog selected region. A further enquiry
is not made but you can undo the deletion each time as long as the region
dialog is open. Just click the Undo button in the toolbar.

15.3 Rename a region
By default regions have no name, but you can choose a remarkable name forRename regions

with a remarkable name each one. Mark the wished region with the left mouse key and click on the edit
name field in the toolbar.
The name of a region allows any character except for the colon ’:’ and is limited
to 64 characters. Enter adopt the name to the selected region.

15.4 Move regions into view
Certain segments of the recording are marked as region because they are im-
portant parts. Of course you want to bring them fast and easy into the visible
part of your analysis windows, e.g. the signal or data monitor.
Possibly you want to compare two regions.
Therefore the region dialog supports the same mechanism for synchronization
like the other analyis windows with the exception that it can initiate the synchro-
nization only. Select the appropriate region and click on the start value to bring

156

15.4. MOVE REGIONS INTO VIEW

up the start of the regions in all analysis windows with acivated synchronizati-
on. Or click on the end value to bring up the right limits of the region.
Please note: Only those analysis windows will react which have the synchroni-
zation active.

Fetch regions into views
Regions can easily be brought into the visible range of an analysis window by
a click onto the start or end value with the left mouse key.

157

KAPITEL 15. REGIONS

158

16
A quick start with Lua

Lua is one of the fastest scripting languages in the world.
Because of it’s small and simple design it’s also easy to learn.
Lua contains a few but also more powerful concepts which
makes it the first choice to add the benefits of a scripting
language to the analyzer software.
This chapter will give you a first glimpse of the language and how
it fits with your analysis.

16.1 Getting started
The most descriptions of a new computer language just begins with the traditional
"Hello World". To keep the tradition, our first script will do the same.

Open the Data Monitor and expand the Watch expressions on the bottom of the
program view. The Watch window contains eight (at first empty) entries. Each
one shows the result of the according Lua script.
To start with our little "Hello World" example, double click the first line in the
watch list which opens the integrated editor. All you have to do is to input the
following two lines:

1 requ i re " dv "
2 dv . watch (" He l lo World ")

Now let’s go and see what happens. The internal Lua engine will translate this
expression into it’s byte code and execute it after you switch to the watch list
again by click on the Watch tab.
Later you will see, that each expression will also be executed at every cursor
movement, receiving synchronize trigger or after update a find request. But for
this time we keep it as simple as possible.
If you don’t have made any typo the first watch items should display:

--> Hello World

Don’t worry, if you made some mistake. In this case, the watch window will
show you some informational message about the error.

159

KAPITEL 16. A QUICK START WITH LUA

So what’s going on here?
The origin Lua doesn’t know anything about the analyzer or the watch window
of the Data Monitor. Therefore we need some ’glue’ to put both things together.
One of this glue is the dv (Data View) library or module. It provides all necessa-
ry output functions to print the results of your scripts in the watch list or to mark
the data in the grid window.

To load a module, you simply call require"modname". After that you can ac-
cess each function provided by the module by prefix the module name with a
dot like dv.watch.

In normal case you always have to load a module before you can use it. But
for all analyzer specific modules and also the basic libraries coming with Lua
we decide to ’preload’ them into the Lua engine for an easier handling. So the
require"dv" is obsolete and we will dispense with it in the following examp-
les.

You can add as much arguments to the watch function as you like. Because
the arguments will be displayed one after another you should also add some
separator between them. So let us modify the example above to:

1 dv . watch (1+1 , " i s less than " , 10/3)

--> 2 is less than 3.3333333333333

As you can see, we are now calling the dv.watch function with three complete
different arguments separated by a comma. The first is the result of the addition
of two integer numbers. The second is a text string identified by its enclosing
double quotes. And the last one is the real number 3.333...
But you don’t have to bother about the ’type’ of each variable. Lua is a dynami-
cally typed language and handles each type automatically1.
That’s nice, but you may ask what’s the benefit for the Data Monitor? Read on!

16.2 Accessing the Data Monitor
With Lua you can compute every data displayed by the Data Monitor. It is the
aim of the Data Monitor module to provide you with functions to query the
cursor position and also the information about each cell in the grid. The next
little script shows the current position of the cursor:

1 n = dv . cursor ()
2 dv . watch (n)

The function dv.cursor() returns the current cursor position starting with 1
(the upper left cell in the grid) and goes up to the bottom right cell in the data
grid. As soon as you move the cursor or click into any cell, the watch entry is
updated with the new position.

1Lua supports numbers (double-precision floating point), strings like our "Hello World" and so
called tables (which are a very mighty concept to realize almost all typical data structures such as
arrays, sets, lists, and records. We will discuss the tables later)

160

16.3. MARK SEQUENCES IN THE DATA GRID

After this little introduction it’s time for a really important function:
dv.cell(index) returns all necessary informations about the given grid ent-
ry like the recorded data byte, the timestamp, the direction and something more
in a table.
Don’t worry about the item ’table’. For a first explanation consider a table as a
container with several cases. Each entry is accessable via its name.
The following example shows what we mean:

1 c = dv . cursor ()
2 dv . watch (" Data : " , dv . c e l l (c) . Data , " Time : " , dv . c e l l (c) . Time)

For a better output, we have to put an additional description in front of each
information.
Now move the cursor in the data grid with the arrow keys of your keyboard or
click on any data cell. If you havn’t closed the watch window you will note that
every time you change the cursor position, the watch item is updated with the
new information computed by this little script.
Line breaks play no role in Lua’s syntax. Therefore we can arrange the both ar-
guments of the dv.watch function in separate lines to make it more readable.

1 c = dv . cursor ()
2 dv . watch (
3 " Data : " , dv . c e l l (c) . Data ,
4 " Time : " , dv . c e l l (c) . Time
5)

As mentioned above the function dv.cell returns all informations in one table.
The entry ’Data’ contains the recorded data byte at the given cursor position,
the entry ’Time’ the timestamp of this data event in seconds.
The syntax for accessing table entries is similar to the modules, i.e. a dot follo-
wing by the name of the item.
You will find a more detailed description about the data table and all its fields
in the following chapter 17.12. For now we continue with another very useful
function of the dv module.
Take your colour pencils, we are going on and colorize the grid.

16.3 Mark sequences in the data grid
Imagine you can visualize one or more specific data sequences. For instance
to highlight a protocol frame or a range of data starting by the cursor position.
All you need to know is the function: dv.mark(index,length,colour)

For the first we want to show the next four data beginning by the cursor as a 32
bit integer (big endian) and also mark them in the grid.

1 c = dv . cursor ()
2 v = 0
3 for i =0 ,3 do
4 v = v ∗ 256
5 v = v + dv . c e l l (c + i) . Data
6 end
7 dv . watch ("32 b i t : " , v)
8 −− mark the g r i d
9 dv . mark (c , 4 , 0xCCFFCC)

161

KAPITEL 16. A QUICK START WITH LUA

Voila - that’s all. As you can see the next four data cells directed by the cursor
are highlighted and the result of our little computing is shown in the watch win-
dow.

The dv.mark function is independent of the current cursor position. Therefore
we have to call the function explicitly with the index of the cell where the cur-
sor was located. This will give you the big advance to mark also cells without
pending on the cursor movement. The following few lines mark all cells with an
error in a warning red background.

1 for i =1 ,dv . s ize () do
2 e r r = dv . c e l l (i) . E r ro r
3 i f e r r == 1 then
4 mark (i , 1 , 0xFF0000)
5 e l s e i f e r r == 2 then
6 mark (i , 1 , 0xFF4040)
7 e l s e i f e r r == 3 then
8 mark (i , 1 , 0xFF8080)
9 end

10 end

162

17
Lua beginners guide

In the last chapter we gave you a quick overview what’s possible
with Lua without any deeper details about the Lua language
syntax and all its mighty qualities. Lua is a programming
language that offers a very impressive set of features while
keeping everything fast, small and simple. So lets go to learn a
little bit more about this amazing scripting language.

Each programing language comes with its own ingredients like operators, key-
words, functions and last but not least some rules how you put this things to-
gether. This is called the programing language syntax. The language syntax
declares, how a program has to been written correctly.
In this chapter we will give you a short overview about the Lua language, the
supported operators, keywords and some helpful additional modules (libraries)
we have integrated in the embedded Lua by default.

Please note! Each time we need an output of some Lua script computing we
are using the Data Monitor and its dv (Data View) Module.
If you like to give each example a trial just start the MSB-RS485 program, open
a Data Monitor and enter the code in a watch entry.

17.1 Lua is case-sensitive
First of all: Lua is a case sensitive language. while is a reserved word (a so
called keyword), but WHILE or While are two other identifiers denote a variable
or function. Because this is the common use in the most modern languages it
shouldn’t bewilder you much.

17.2 Whitespaces and line ends
Lua ignores any whitespaces (like the space or tab characters) if they aren’t
part of a string constant (see 17.4). It also doesn’t worry about the indention
like Python, therefore you can format your code for your own purpose (or just
make it more readable).
Lua doesn’t use any special line end and line breaks play no rule in the Lua
syntax. The Lua intepreter detects the end of a statement automatically there-
fore a line can contain more than one statement and a statement can also be
split into several lines.

163

KAPITEL 17. LUA BEGINNERS GUIDE

If you write several statements in one line, you can use the semicolon as a
separator.

1 x = 1 y = 2 −−> not very readable but ok
2 x = 1; y = 2 −−> b e t t e r
3 z = x
4 +
5 Y −−> z = 3

17.3 Comments
A comment in Lua starts anywhere with a double hyphen -- and runs until
the end of the line. It’s also helpful if you want to exclude some lines from
execution.
More than this. Lua provides also a block comment which starts with --[[
and runs until the corresponding --]]. It makes it very easy to comment or
uncomment several lines as we will show in the following:

1 x = 1
2 −− [[
3 x = 10
4 −−]]
5 dv . watch (x) −−> 1

To uncomment the block, just add a single hyphen to the beginning comment.
The starting and closing comment identifiers are now just like other commented
lines and the statement between them will be executed as normal.

1 x = 1
2 −−− [[
3 x = 10
4 −−]]
5 dv . watch (x) −−> 10

17.4 Types and values
Lua is a dynamically typed language. You don’t have to specify the type of a
value, because each value carries its own type. Lua supports eight basic types
but we contemplate only the following ones:

number

boolean

string

nil

table

function

It is common use to define most of the types also as a ’constant’ value. A con-
stant is a ’hard coded’ value in your program which isn’t a result of any compu-
ting. Constants are numbers (integer and floating point numbers, whereat Lua
doesn’t distinguish between them), strings and the boolean values false and
true.

164

17.4. TYPES AND VALUES

Numbers
Lua simplify the use of different numbers like integer, single float, double float
by using only one kind of type for each numbers. Numbers in Lua are always
double precision floating point numbers and were converted automatically.

1 dv . watch (1) −−> 1
2 dv . watch (−12) −−> −12
3 dv . watch (100000000000) −−> 100000000000

Notice that the numbers are never rounded into integers to. Hence:

1 dv . watch (10 / 3) −−> 3.3333333333333

Hexadecimal constants
Despite the fact, that Lua compute exclusively with floating points you someti-
mes want to use other number bases like hex.

1 dv . watch (0x1234) −−> 4660

Floating point constants
Lua can understand also exponent types for expressing numbers. Therefore
you can write numeric constants with an optional decimal part and an optional
decimal exponent like:

1 dv . watch (−0.05) −−> −0.05
2 dv . watch (10E−2) −−> 0.1
3 dv . watch (1.25E+6) −−> 1250000

Booleans
A boolean data type according to the classical logical state and is either true
or false. If a boolean value isn’t true, it has to be false and reversely. Boolean
values are used to represent the result of logical or conditional operations.

1 dv . watch (2 > 1) −−> t rue
2 x = 2 < 4
3 dv . watch (x) −−> f a l s e

Strings
Strings in Lua has the common meaning, a sequence of characters. But Lua
is, in opposition to other languages, eight-bit clean which has the great advan-
tage: Strings can contain characters with any numeric code, also a null byte (in
C the string terminator). With other words: You can store any binary data in a
string without an exception.
Strings can be defined using single quotes, double quotes, or double square
brackets.

1 dv . watch (" I t ’ s your code ") −−> I t ’ s your code
2 dv . watch (’He says : " Hi " ’) −−> He says : " Hi "
3 dv . watch ([[He l lo \ nWorld]]) −−> Hel lo \ nWorld

165

KAPITEL 17. LUA BEGINNERS GUIDE

Why so different ways to specify a string? It allows you to enclose one type of
quotes in the other. And: Double brackets have a few other properties like to
suppress escape sequences as seen above.

Escape sequences in strings
Lua strings can contain the following escape sequences:

Escape sequence Description
\a bell
\b backspace
\f formfeed
\n newline
\r carriage return
\t horizontal tab
\v vertical tab
\\ backslash
\" double quote
\’ single quote
\ddd character with its numeric value ddd

The following examples show their use:

1 dv . watch (’ I t \ ’ s your code ’) −−> I t ’ s your code
2 dv . watch ("He says : \ " Hi \ " ") −−> He says : " Hi "
3 dv . watch (" Tab1 \ tTab2 ") −−> Tab1 Tab2
4 dv . watch ("Two backslashes \ \ \ \ ") −−> Two \ \
5 dv . watch (" He l lo \ nworld ’ ’) −−> Hel lo
6 world
7 dv . watch ([[He l lo \ nworld]]) −−> Hel lo \ nworld

You can also specify each character in a string by its numeric decimal value
through the escape sequence \ddd as mentioned above. For instance the bi-
nary sequence of the bytes 0...3 comes as: "\000\001\002\003".

nil
nil is a special type and indicates a non-value. Each variable has a nil value
before its first assignment by default.

1 dv . watch (x) −−> n i l

More than: Lua uses nil to specify the absence of a useful value (it doesn’t
exist anymore). By setting a variable to nil you can delete a variable.

Tables
One of Lua’s mightiest built-in datatypes is an associate array, which defines
one-to-one relationships between keys and values. Key and values can be of
each type. And more than this: Because functions are also just some kind of
value, you are able to realize some object orientated behaviour with tables too,
but this go beyond the scope of this chapter.

166

17.4. TYPES AND VALUES

Tables has no fixed size and grow up as necessary. If you havn’t use of a table
anymore, you can throw it away with assigning nil to it.
Ok, that’s enough for the first. Let’s go on with a few examples to bring more
light in this matter. At first we will create a simple list containing three line states
as strings:

1 l i n e s t a t e s = { " mark " , " space " , " i n v a l i d " }
2 dv . watch (l i n e s t a t e [2]) −−> space

This statement in line 1 will initialize the first entry in the table linestates[1]
with "mark", the second linestates[2] with "space" and the third with "in-
valid". Please note, that in Lua indexes start with 1 and not with 0 (like in C).
The table here behaves like a simple list. You can append a new element to a
table using the table.insert(table,value) function.

1 t = { 1 , 2 , 3 , 4 , 5 }
2 tab le . i n s e r t (t , 6) −−> 1 , 2 , 3 , 4 , 5 , 6
3 dv . watch (" Count : " , # t) −−> Count : 6

The statement in line 3 uses Lua’s internal length operator #, see also section
17.8. If you like to insert a new item somewhere in between the list without ha-
ving to shuffle the other elements around you can use the same function with an
additional position parameter table.insert(table,position,value).

1 t = { 1 , 2 , 3 , 4 , 5 }
2 tab le . i n s e r t (t , 4 , 44) −−> 1 , 2 , 3 , 44 , 4 , 5
3 dv . watch (" Count : " , # t) −−> Count : 6

To remove an element from the table (or list) use the call:
table.remove(table,position).

1 t = { 1 , 2 , 3 , 4 , 5 }
2 tab le . remove (t , 4) −−> 1 , 2 , 3 , 5
3 dv . watch (" Count : " , # t) −−> Count : 4

You can always replace one element with another one just simply by overwri-
ting it. Each element in the list is accessable with the index operator []. To
rewrite the second element with 200 t[2]=200 will do the job. You can also
query the value at a given position conversely with: v=t[2]. If there doesn’t
exist a value at the index position, a nil will return. On the other hand: If you try
to overwrite a value at an invalid position it will append to the list.

In the examples above the keys of the associated array are set by default (as
numeric) and only the values are given. But you can choose any desired index
or key value too. Imagine a data type representing a point:

1 po in t = { x = 5 , y = 10 }
2 dv . watch (po in t . x , po i n t . y) −−> 5 10

A table storing data with a key/value relationship is sometimes called a dictio-
nary.

167

KAPITEL 17. LUA BEGINNERS GUIDE

Functions
We will discuss functions in this paragraph only according to their role as va-
lues. For detailed information about functions and their definition please take a
look at section 17.10.
In Lua, functions are assigned to variables, just like numbers and strings. If you
are bothering with the long term dv.watch assign it to the internal Lua print
(the latter is without any use in the analyzer enviroment and can therefore be
overwritten).

1 p r i n t = dv . watch
2 p r i n t (" He l lo World ") −−> output i n the watch window

Furthermore a function is a variable referencing the code of the according func-
tion and you can overwrite it with any other value.

17.5 Identifiers
In computer languages identifiers are names referencing some kind of variable
or a function. Some identifiers are reserved by the language itself as so called
keywords. (We already know the boolean keywords true and false). Others are
built in functions like print.
Names (or identifier) in Lua can be any string of letters, digits and underscores,
not beginning with a digit1. Valid names are:

x y ABC t1 _nm
aVeryLongVariableName the_last_result

Invalid names throw an error
1 dv . watch (2n) −−> malformed number near ’2a ’

17.6 Keywords
The following keywords are reserved and cannot be used as names:

end false for function if
in local nil not or
repeat return then true until while

Please remember: Because Lua is case-sensitiv, and is a keyword, whereas
And and AND are just two other and different identifiers!

17.7 Variables
Variables are like a named box that can store any kind of value. In Lua variables
can cover a single number as also a million characters or a container of key-
value pairs. The name of the variable has to be a valid identifier (see above).
You don’t have to declare a variable before the first use. As soon as the Lua
interpreter finds a new variable it will created it automatically.

1Because the analyzer software and Lua itself too reserves the starting _ for some language
supplements we recommend to start a variable name without an underscore.

168

17.8. OPERATORS

Assignment
Note! Before the first assignment to a variable, its value is nil. Assignment is
the general procedure to set or change the value of a variable (or a table field).

1 i f x == n i l then
2 x = 1
3 end
4 dv . watch (x) −−> 1

As mentioned before: Lua is a dynamically typed language. You don’t have to
define the type of a variable because each value carries its own type.
And: The type of a variable is an object of change. Every time you assign a
new kind of value to a variable it change its type again.

1 x = 1
2 x = " He l lo World "
3 dv . watch (x) −−> Hel lo World

Lua also supports multiple assignment which means: A count of values is assi-
gned to a count of variables in one step. We will discuss this very nice feature
in a later section in the context of functions with multiple results. For the cu-
rious reader here a litte code example exchanging the values of two variables
without any additional temporary variable:

1 x = 5
2 y = 10
3 x , y = y , x
4 dv . watch (x , y) −−> 10 5

Global and local variables
There are three kinds of variables in Lua: Global variables, local variables and
table fields (we discuss tables later).
By default each variable is a global one which means: It is accessable during
the complete runtime. Global values resides in a ’global’ space (in detail in a
global table).
Beside this local variables is only valid in the context or block where they are
declared.

1 y = 10
2 i f x == n i l then
3 local y = 5
4 x = 1
5 end
6 dv . watch (x , y) −−> 1 10

It’s a common strategy to use local variables wherever you don’t like to access
a global one. For instance if you need some variables only in a function, decla-
re them as local.

17.8 Operators
Operators are symbols, which activate calculation, when using them in combi-
nation with variables, values or results from expressions. Lua supports arith-
metic, conditional and logical operators. In addition a very helpful string conca-
tenation operator.

169

KAPITEL 17. LUA BEGINNERS GUIDE

Arithmetic operators
Lua supports the usual arithmetic operators: the binary + (addition), - (subtrac-
tion), * (multiplication), / (division), % (modulo), ^ (exponentiation) and unary -
(negation).

+ - * / % ^

Please note: In Lua Numbers are always represented as real (double-precision
floating-point) numbers.

Conditional operators
Conditional operators always result in true or false. Lua provides the following
conditional (or relational) operators:

< > <= >= == ~=

The == operator tests for equality, the operator ∼= is the opposite of equality.
You can apply all operators to any two values, numbers and strings (all conditi-
on operators also dealing with strings). If the both values have different types,
Lua handles them as not equal.
Please note: The value 0 isn’t a false test condition as you may suspect from
other languages.

1 dv . watch (" abc " < " def ") −−> t rue
2 dv . watch (0 or true) −−> 0
3 dv . watch (fa lse or true) −−> t rue

Logical operators
Lua provides logical operators for use in statements. They are: and, or and
not. The logical operators behave in a common way. They always evaluate to
either true or false. In a special case the value nil will be considered as false.
and and or use a short-cut evaluation, means: They evaluate their second
operand only when necessary. For instance:

1 dv . watch (4 and 5) −−> 5
2 dv . watch (4 or 5) −−> 4 (shor t−cut eva lua t i on)
3 dv . watch (fa lse and true) −−> f a l s e (shor t−cut eva lua t i on)
4 dv . watch (a and 1) −−> n i l , because a wasn ’ t s p e c i f i e d
5 dv . watch (not fa lse) −−> t rue

String concatenation operator
The two dots .. denote the concatenation operator in Lua. The operator takes
two strings (numbers will convert by Lua in strings) and combines them in one.
Please note! If the first operand is a number you have to insert a space between
the number and the .. operator. Otherwise Lua missinterprets the first dot as
a decimal point and throws an error. Hence:

1 dv . watch (" He l lo " . . " World ") −−> Hel lo World
2 dv . watch ("100 " . . " sec ") −−> 100sec

The concatenation operator always creates a new string and leaves the ope-
rands behind without modifications.

170

17.9. CONTROL STRUCTURES

The length operator
The length operator is denoted by #. The length operator returns the count of
bytes in a string or the items in a table if the table doesn’t have any gaps.

1 dv . watch (#" He l lo World ") −−> 11

Precedence
The following is a list of all Lua operators and their order of predence. The
operators are listed highest to lowest.

^
not # -(unary)

* / %
+ -
..
< > <= >= ~= ==
and
or

If in doubt, use explicit parentheses. It makes your code more readable and
prevents you from an any additional look in this manual.

17.9 Control structures
Control structures tell the program which way to proceed in the code (or script).
They are integrated part of each language and something like the traffic police
in Lua scripts.
Lua provides the following set of control structures, the if for conditional execu-
tions, for, repeat and while for iteration. All of them, except repeat, needs the
explicit end terminator. repeat has to be closed with until.

if then else
The if statement tests a condition and executes depending to its result the then
section or the else section. The later one is optional.

1 i f x < 0 then
2 x = 0
3 else
4 x = math . s q r t (x)
5 end

You can put small condition tests in a single line like:

1 function max(a , b)
2 i f a > b then return a else return b end
3 end

Lua doesn’t have any switch statement. Therefore the following if, elseif chains
are common.

171

KAPITEL 17. LUA BEGINNERS GUIDE

1 i f a >= 100 then
2 exp = 2
3 e l s e i f a >= 10 then
4 exp = 1
5 else
6 exp = 0
7 end

while
The while statement executes a block as soon as the while condition is true.
As usual the condition is tested first. The block will never execute if the first test
results in false.

1 loca l x = 0
2 while x < 10 do
3 x = x + 1
4 end

repeat
On the contrary the repeat statement repeats its body until the condition is
true. Because the test is done after the block, the block is always executed at
least once. Please note the different terminator until.

1 loca l x = 0
2 do
3 x = x + 1
4 u n t i l x < 10

Numeric for
Lua provides two for statements but we confine ourself to describe only the first
and more comprehensible numeric for. The numeric for has a variable with a
starting assignment, an end value and an optional step value. The latter one is
1 by default.

1 for var= s t a r t , end , s tep do
2 −−> do something
3 end

For instance a
1 loca l m = 0
2 for n=0 , 9 , 0.1 do
3 m = m + 1
4 end
5 dv . watch (m) −−> 5.5

break
A break cancels a for, repeat or while loop and continues with the instructions
after the loop block.

172

17.10. FUNCTIONS

1 loca l m = 0
2 for n=0 , 9 , 0.1 do
3 m = m + 1
4 i f m == 2.5 then
5 break
6 end
7 end
8 dv . watch (m) −−> 2.5

17.10 Functions
Every computer language has functions, even the simple ones. Lua is no ex-
ception. A function can perform a specific task and/or compute and return va-
lues. If you notice the plural values you are right - Lua functions are able to
return multiple results.
In both cases you have to give the function a list of arguments enclosed in par-
entheses. If the function doesn’t need any argument, you still give it a empty
list specified by ().

Function call
Simply said a function is called just by its name and an optional count of argu-
ments as a list. You can invoke a function with more than the specified argu-
ments whereas only the first are handled but if you try to call a function with
fewer parameters you get an error.
You learned about some already defined functions like the dv.watch(...)
or the math.sqrt(x). Most of this functions are part of some module, others
are defined by the analyzer.

Function definition
Function are conventionally defined with the keyword function.

1 function fnc (arg1 , arg2 , . . .)
2 −−> the f u n c t i o n body
3 end

For example a maximum function returning the greater value of two given num-
bers is defined as:

1 function max(n1 , n2)
2 i f n1 > n2 then return n1 else return n2 end
3 end

Function doesn’t have to return a value. In this case you can just omit the re-
turn statement or leave the return without any following value(s).
As mentioned above, a function in Lua can also return multiple results. This is a
big advantage, because you don’t have to collect the results in some container
and don’t run the risk of side effects by set up a global (outstanding) variable.
Several predefined functions in Lua return multiple values like the math.modf(x)
(one result is the integral part of x and the other one the fractional part of x).
For instance:

1 dv . watch (math . modf (5.125)) −−> 5 0.125

173

KAPITEL 17. LUA BEGINNERS GUIDE

The definition of a function with multiple results is as easy as of each other
function. An example shows the differences. Imagine some function to con-
vert coordinates of a plane polar system (radius and angle) into the cartesian
system (x and y).

1 function po la r2ca r tes ian (radius , angle)
2 x = rad ius ∗ math . s in (math . rad (ph i))
3 y = rad ius ∗ math . cos (math . rad (ph i))
4 return x , y
5 end

Instead of build some container for both results we just return them as a multiple
result.

17.11 Modules
A module is a package of functions for a special purpose. You already know the
modules math or the dv module belonging to the analyzer software. From the
Lua point of view each module is a table which contains functions (functions are
a special kind of value as we mentioned before), global module values, module
constants etc. Therefore each module function is called like a table element
with the prefixed table (module) name and a dot.

Standard Modules
The following standard modules are supported by Lua in the analyzer enviro-
ment, see section Limitations 17.13.
In normal case you have to load a module first with the require("modname")
statement before you can access any module function. But for the analyzer en-
viroment we decide to preload the following standard modules automatically for
an easier use.

Module Description
math The mathematical library. It provides access to the mathe-

matical functions defined by the C standard.
string The string library provides a lot of generic function for string

manipulations, searching and extracting substrings and pat-
tern matching with regular expressions.

table The table library contains special functions for array or list
tables (with a numeric indexing).

You will find a short (but very good) reference paper about Lua and its suppor-
ted modules as one PDF file at: http://lua-users.org/wiki/LuaShortReference
The paper is also contributed by the MSB-RS485 software. Take a look in the
doc directory of your installation folder.

Analyzer Modules
The MSB-RS485 software offers some additional modules to connect the capa-
bilities of the analyzer with the Lua language. Most of them are fitted as best to
the according view.

174

http://lua-users.org/wiki/LuaShortReference

17.11. MODULES

bit Module

dv Module

record Module

The bit module provides you with binary bit operations which are not imple-
mented in Lua.
The second module you have get to know is the Lua support for the Data Mo-
nitor.
With the record module you can query imformations about the current record
like the used protocol, the start time of the record and the names for each
signal.

Bit Module
Lua does not know different number formats but processes all numbers as floa-
ting point values with double precision. Therefore bit operations are not provi-
ded in the standard implementation of Lua.
On protocol or data level you will sometimes face the task to evaluate single
bits or to modify data bytes bit-wise (e.g. in the context with check sum evalua-
tion).
The bit module expand the integrated Lua interpreter with the following func-
tions:

The Bit Module (bit)

band(x1,x2) returns the bitwise and of its arguments x1 and x2,
for instance bit.band(0xFF,0x01)

bor(x1,x2) returns the bitwise or of its arguments x1 and x2, for
instance bit.bor(0xFF,0x01)

bxor(x1,x2) returns the bitwise xor of its arguments x1 and x2,
for instance bit.bxor(0xFF,0x0F)

bnot(x) The result is the logical negation of the single bits
(also ones complement). Each 1 is replaced by a 0
and vice versa. For instance bit.bnot(0x55)

lshift(x,n) returns bitwise logical left-shift of its first argument x
by the number of bits given by the second argument
n. For instance bit.lshift(0x100,2)

rshift(x,n) returns bitwise logical right-shift of its first argument
x by the number of bits given by the second argu-
ment n. For instance bit.rshift(0x1FF,1)

9bit.msbprj
Example of a LRC
calculation

The sample project 9bit.msbprj shows the use of the bit module based on
the evaluation of a LRC check sum. You will find it in the examples/DataView
sub-directory of the installation directory.

175

KAPITEL 17. LUA BEGINNERS GUIDE

Data View Module
The Data Monitor (or Data View) module dv provides you with functions to
query all information about the recorded data as displayed in the grid. For in-
stance you can access each cell via its index, the current cursor position and
the amount of the cells in the grid.

Leave it to Lua to compute the data from specific cells and output it in up to eight
independent entries in the Watch window. For example validate a checksum or
convert the data of different cells into floating point numbers etc.

Beside this you are able to mark a specified cell or a sequence of cells with a
given colour. And you can dye the complete data field or just a small number of
cells relative to the cursor position.

Last but not least: If you are unhappy with the information shown in both fields
of the statusbar, don’t worry. The Data Monitor modules provides you with a
function to put in any information you like to see.

Further examples...
Error displaying,
S-Record visualisation

Examples for the use of the Data View Module can also be found in the sub-
directory examples/DataView of the installation directory.
errors.msbprj colors all data bytes containing a frame or parity error or
occurred breaks. srecord.msbprj visualizes a recorded S-Record transmis-
sion.

The Data View (dv) module

cell(index) returns the log event table from the cell with the
given index. The first cell of the Data Monitor is
indexed by 1, the last with dv.size(). See also
17.12

cursor() returns the current cursor position in the grid as in-
dex. The index starts with 1, the last possible index
is dv.size().

mark(pos,n,col) marks the next n data cells from position pos (star-
ting with the first cell as 1) with the given colour col

size() returns the index of the last visible cell in the Data
Monitor grid.

statusbar(f,args)displays each of the given arguments args in the left
field (f=1) or right field (f=2) of the statusbar

watch(args) displays each of the passed args to the according
watch entry in the Data Monitor

Record Module
The record module offers you some additional functions to query important
informations about the current record. For instance: the used baudrate, word-
len, parity setting, stopbits, all signal names and the start time (date) of the
recording.

176

17.12. ANALYZER SPECIFIC DATA TYPES

The functions in detail:

Das Record Modul (record)

protocol() returns the baudrate, count of databits, parity
setting None, Odd, Even and used stopbits as a
value list. For example:
baud,databits,parity,stopbits = record.protocol()

signalnames() returns all eight signalnames as a list from Signal1
to Signal8. For instance:
s1,s2,s3,s4,s5,s6,s7,s8 = record.signalnames()

starttime() supplies the start time (date) of the current record
as the so called Unixtime (represents the number
of seconds elapsed since 00:00:00 on January 1,
1970, Coordinated Universal Time (UTC)).

17.12 Analyzer specific data types
The analyzer stores each detected change as a special record. This record
contains all the associated information like the time in microsecs, the kind of
alteration, the state of each line and other. With a
dv.cell(dv.cursor())
you are able to request the event from the current cursor position (or relative to
it) as a table and compute the information for your own purpose.
Each field in the table represents one spezific information about the event. Valid
table fields are:

177

KAPITEL 17. LUA BEGINNERS GUIDE

The LogEvent table

dv.cell(i).Data returns the data (up to 9 bit) of the given cell i.
dv.cell(i).CountAll the current data event number (all data chan-

nels A+B).
dv.cell(i).CountThis the current data event number (only for this di-

rection).
dv.cell(i).Error returns the error (if exist) of the given cell i or

0. Errors are: 1=Frame, 2=Parity, 3=Break.
dv.cell(i).Position the event number of the given cell i. The event

counting starts with 0 and includes all selected
events.

dv.cell(i).Sig? query the logical signal state (line level) at the
time of the given data event (cell). ? denotes
the signal number 1...8. The result is: +1, –1 or
0 (inactive).

dv.cell(i).Source returns the the data source of the given cell i.
1: Data channel A, 2: Data channel B.

dv.cell(i).Time the time stamp of the given cell i in seconds
as a floating point number.

dv.cell(i).Valid returns the valid state of the given cell i. Empty
cells (marked as XX) returns false, otherwise
true.

17.13 Limitations
The original Lua comes with a lot of additional modules. Not all of them are
for any use in the analyzer enviroment and therefore are excluded from the
embedded Lua implementation. Not available modules are:

I/O Library

OS Library

To avoid a slow down of the analyzer software by busy or overloaded compu-
ting scripts, for instance a long running or endless loop, the internal Lua VM
(virtual machine) doesn’t allow to out ran a specified quantum of operations.
In this case, the VM aborts the execution of the script and throws out an infor-
mational message.
Just try the following:

1 loca l x = 0
2 while true do
3 x = x + 1
4 end

--> [string "local x = 0..."]:-1: overrun of allowed executions

178

17.14. FURTHER INFORMATION

17.14 Further information
This chapter can’t replace any good introduction to Lua. It only covers the ne-
cessary information you need to undertake the first steps with Lua in the MSB-
RS485 software.
It also gives you a small outlook of all the language features Lua comes with.
For more information about Lua please visit the Lua website at http://www.lua.org.
You will find a very good tutorial at http://lua-users.org/wiki/TutorialDirectory
too.

179

http://www.lua.org
http://lua-users.org/wiki/TutorialDirectory

KAPITEL 17. LUA BEGINNERS GUIDE

180

18
Synchronize two analyzers

You have two connections (RS232 and/or RS422/485) which you
want to watch or examine in parallel, for instance IN and OUT
data of a protocol converter, different bus segments or generally
interdependent data transmissions.
How you have to proceed and what is to be regarded is
described in this chapter.

For a simultaneous recording of two separated connections you need two MSB
analyzers. But this is only one requirement. To compare two recorded data files
the data have to be in a precise time relationship. Without this relationship you
can neither decide about the chronological sequence nor check the synchroni-
city of certain events.
For example when was a data byte or data sequence sent in relationship to the
data of another connection. What happened in both connections at a defined
point in time.

18.1 Technical requirements
One of the outstanding features of the MSB-Analyzer is the exact time mea-
surement and visualizing of the time behavior in microsecond resolution. This
precision is necessary to deliver correct results even for higher baud rates and
is also valid for the common analysis of two connections. What does this mean?

Imagine two agents which shall enter a secured building and have to watch
and record the way of the guards at different positions. Before they begin they
compare their watches. This is done within a difference of a typical one second
divergence. Both agents have watches which differ not more than one second
per day. It doesn’t bear contemplating if both watches would disperse after so-
me minutes. Now each agent proceeds to his position.
Each one notes the point in time (seconds precision) of the change of guards.
As the watching takes some days both agents synchronize their watches re-
peatedly at midnight by a short radio pulse from one of the agents.

For the successful execution of their plan they have to know each step of the
guards within a difference of one second.
The same procedure but with a far higher precision must be performed for the
simultaneous recording of two connections. The time comparison at the begin-

181

KAPITEL 18. SYNCHRONIZE TWO ANALYZERS

ning is done by the exact simultaneous start of the recording, where simulta-
neous means a precision of one microsecond.

Of course the clocks of both MSB-Analyzer are more precise than the watches of
the agents, but nevertheless they also differ from each other because of small
natural differences of the crystal oscillators. They have to be synchronized in
regular intervals. The MSB-Analyzer uses for both, the synchronous start and
the regular timing of the clocks an additional synchronizing connection.

For this purpose each MSB-Analyzer offers a so called ’MSB-Link’ jack in RJ45
design. To synchronize two analyzers simply connect them with a standard net-
work 1:1 cable. Please regard that although standard network cables are used
you must not connect the analyzer to another data network. The signals are
not compatible and the analyzer could be damaged.

It doesn’t matter if both analyzers are connected to the same or different PCs.
The PCS also do not have to share a common network. The only restriction
is the length of the synchronizing cable between both devices1. The synchro-
nizing affects only the start of the recording and the precise keeping of the
common time basis. That means that the time stamps of both analyzers are
comparable on millionth second.

Furthermore both analyzers work fully independent. That means that you can
record completely different protocols and events (baud rate, data format a.s.o.).
Moreover you can connect a MSB-RS232 and a MSB-RS485 analyzer to simul-
taneously analyzer RS232 and RS485/422 connections, for example in inter-
face converters.

18.2 Master Slave operation
It makes no sense to start the recording of the synchronized analyzers sepa-
rately. Especially if both devices run at different PCs which may be at different
locations. Start, Pause, Stop of the common recording are operated from a
before as ’Master’ defined analyzer. This one is freely selectable. The second
analyzer, connected via the synchronizing cable, is automatically set as ’Slave’
and controls its own recording synchronous to the Master with microsecond
precision.

Both synchronized analyzers can be configured in the way that the recorded
data are automatically stored to a predefined storage location when the record
is stopped. This can be a local drive of the PC where the respective analyzer
is connected to. It can also be any other drive, for instance a network drive. So
both analyzers can store their data on the same drive but in different files.

The recorded data files are named with the serial number of the analyzer and
the date/time of the start of recording. Additionally you can place any character
string at the beginning (prefix).

1Tested was a CAT6 network cable with 100m length.

182

18.3. ESTABLISH A SYNCHRONOUS RECORD

18.3 Establish a synchronous record
Now you have a rough idea of how the synchronous recording works. Let’s
come to the practical part. Imagine you have two RS232 connections you want
to record commonly. To simplify matters the recording is done at only one PC,
where both analyzers are connected to.
At first connect both devices via a standard network cable. We recommend
cable of category CAT-6, but for the most applications cables of category CAT
5 are sufficient.

Warning!
Please note that the analyzer must NOT be connected to a PC network
through the MSB Link jack. This will probably result in a damage of the MSB-
Analyzer.

Start the Analyzer software with the desktop icon. If multiple analyzers are
connected to the same PC you have to select the wanted analyzer from a list
(select connected analyzer). Repeat this step for the second analyzer. The sa-
me procedure applies even if the analyzers are connected to different PCs.
Place both control programs (each connected to a different analyzer) on the
screen.

Still both devices work independently of each other. You can start, stop or pau-
se the analyzers individually. They also work on different time bases.
Since both analyzers can record different connection protocols or types (RS232
or RS485) you first have to configure each analyzer according to the require-
ments of the examined connections. This is done just like the recording of a not
simultaneous recording. Set all the required parameters in the settings dialogs
of the analyzers.

Choose a storage place
for the automatically
stored records

By default both analyzers store their data on the desktop as soon as the recor-
ding is stopped by the Master (by you). You can also set the place to any other
location by selecting another directory in the settings dialog ’Auto store’.

The file name is set by the analyzer program itself to avoid errors for repeated
storing by already available files. It also makes it possible to assign the file to
the analyzer exclusively.
The file name consists of the following parts, here a sample of the analyzer
with the serial number MSB01060, started on 16th of April 2014 at 15:32.17.

MSB01060-20140416153217.msblog

Additionally you can place any character string in front of the name as a prefix,
e.g. MASTER or SLAVE.

After having configured both devices you only have to set the Master for syn-
chronous recording (assumed both analyzers are connected via network ca-
ble).

Master and Slave
Specify the record master

Activate the device which shall be the Master device. This is done in the set-
tings dialog under ’Analyzer is Master’. In the program display the word Master

183

KAPITEL 18. SYNCHRONIZE TWO ANALYZERS

is shown above the running recording time.
At the same time the analyzer, which is connected to the Master, displays the
word ’Slave’ in its program display and the buttons and menu entries to control
the recording are deactivated.

As soon as you uncheck the Master entry both analyzers are autonomous de-
vices again. The same applies if you disconnect the link cable.

Close the settings dialog and click in the control program of the master on the
start button. Both devices change to the record mode, indicated by the respec-
tive button display and the red LED at the analyzers themselves.
Click the Pause button of the master to hold the recording.
After clicking the stop button of the master the recording of both analyzers are
finished. They automatically store their data on your desktop or any other spe-
cified directory.

You can repeat this procedure any time. As soon as you click the start button
both analyzers will start a new recording and and after clicking on stop they will
store them as two new data files.
This way of operation does not differ if both analyzers are connected to different
PCs which may also be placed in different rooms. The only requirement is the
connection via the link cable.

18.4 Analyse a synchronous record
The MSB-Analyzer software is optimized to visualize a single recording by multi-
ple different views. The loading of multiple record files is not possible because
two or more records with different settings makes no sense within the applica-
tion. For instance a RS232 and a RS485 recording need different displays and
dialogs2.
But how can two records be analyzed at the same time?

The Analyser software consequently extends the already available communi-
cation between the views of a single application to multiple parallel running
applications. That means that like the the signal monitor follows the cursor of
the data view now all views of the separately running analyzer programs are
synchronized to the cursor That has a number of crucial advantages:

Comparing analysis of differing recordings (baudrate, protocol, type of commu-
nication, ..).

Synchronous moving and parallel display of certain ranges in both records (e.g.
search for events in record A and showing the respective signal sequence in
record B).

No new operating scheme, no new menus.

Therefor the analysis of two synchronized recordings is not different to the ana-
lysis of a single recording. Instead of starting only one analyser application you

2In the end a running MSB analyzer program application correspondents to ONE recording.
This is the same as for Audio or Video applications.

184

18.5. CONCLUSION

now start two different programs for the Master and the Slave recording.

For the evaluation in conjunction you do not need a connected analyzer. The
examination can be done as is usual in the offline mode.
Click on the master and slave recordings one after another. Both applications
make the accustomed access to the respective data. The views of each app-
lication synchronize their windows if the synch. Mode is activated in their tool
bar.

To synchronize the views between BOTH running applications you first have
to enable this feature. By default the synchronization from external sources is
disabled.
The enabling is done for all Views of an application centrally in the control pro- Ext. Synchronisation

is enabled in the record
settings

gram at ’common settings’. Activate ’allow external synchronization’.

By enabling the external synchronization the control program receives the mou-
se clicks or events (search results, region selection, etc.) from a parallel running
analyzer application and passes them to its opened views. Each view with ac-
tive synch. setting reacts on these events and actualizes its display.
In this way you can watch the slave recording at any time point in the master Synchronous display

of all Views in both
records

recording and vice versa. Both applications keep their views synchronous to
one defined time stamp.

18.5 Conclusion
The comparing recording or analyzing of two separate connections requires a
high precise reference to set the recorded data and events in relationship to
each other.
These chapters showed you why this is necessary, which technical require-
ments have to be fulfilled and how such a recording has do be done with two
MSB analyzers.
Here come the necessary steps again without ballast.

Synchronous recording
1 Connect both analyzers which shall be synchronized via a standard network

cable.

2 Connect both analyzers to one or two PCs.

3 Start a separate MSB analyzer program for both devices.

4 Set up individual connection parameters for both analyzers.

5 Check if the automatic storage after record stop is activated and specify a sto-
ring location if necessary.

6 Define one of the devices as Master in the set up dialog of the appropriate
application program at ’Record’.

7 Start the synchronous recording at the master control program.

8 The recording is also stopped by the master whereas both records are auto-
matically stored separately.

185

KAPITEL 18. SYNCHRONIZE TWO ANALYZERS

Synchronous analysis
For the evaluation of two synchronously logged records you do not need a
connected analyzer, but both MSB analyzer programs have to run on the same
computer because a synchronization of the views is not possible through the
network cable in opposite to the synchronization of the recordings themselves.

1 Double click on both (master and slave) recordings resp. start two MSB-Analyzer
programs. Load the files into the control program.

2 Activate in both programs under ’General’ the entry ’allow external synchroni-
zation’

3 Place both control programs and the wanted views on the screen.
4 Navigate as used through both recordings. The views in synchronous mode

will automatically align their content to the examined time period.

186

19
Commandline API

You want to automatize the recording of a data connection and
process the recorded data in your own application, or to store
respectively output them?
A long recording should saved as several sequenced files or
splitted afterwards.
You like to control the analyser from within your application.
The MSB-Analyzer software offers a series of powerful tools which
we will describe in this chapter.

After installation of the analyzer software you will find some helpful other tools
in the installation directory beside the programs for operating the MSB-RS485
and visualizing the recorded data.
All these programs are based on command lines and might be used as part of
batch files or shell scripts. According to the Unix philosophy ’Do only one thing
but do it well’ each of these programs has only one function. By their capabili-
ty to read from the standard input and send their results back to the standard
output these programs may be combined in any way (program tool chain).
Further more: You can combine them with a lot of other programs which are
able to handle data via standard input/output.

The command line programs in overview:

msb_record
This tool controls the analyser and writes all received data to the standard
output or in a given file.

msb_format
Output the analyser data read from standard input in a user specified format.

187

KAPITEL 19. COMMANDLINE API

msb_filter
Filters the analyser data passed from standard input to output by user defined
rules.
msb_split
msb_split reads data or a record file from the standard input and splits the
output into smaller record files.
msb_trigger
Checks the data from the standard input against some given trigger conditions
and start or stop passing the data to standard out according to the result.

19.1 Combine the programs as a tool chain
You can simply put the tools mentioned above together to work as a proces-
sing chain. Thereby each program processes data of the former program and
forwards it to the next tool in the queue.
The processing (tool) chain always consists of a data source and a data sink.
The single programs can be linked with the ’|’ operator which is identical for
Windows and Linux.

DATASOURCE | MANIPULATOR1 | MANIPULATOR2 | ... | DATASINK

Data source
Each tool chain starts with a data source. The data source provides the followi-
ng programs with the necessary input, here most of all the tool msb_record.
But the output of a already existing analyser record file via type (Windows)
respectively cat (Linux) works just as well. For instance:
type recordfile.msblog or cat recordfile.msblog

Manipulators
A program which modifies the data during the forwarding is called a manipula-
tor. A typical manipulator might remove special parts of the read data before it
pass it on the next link in the chain or change the read data in another format
specified by the user.
Therewith you can extend or complete the processing of the data simply by in-
serting any number of manipulators in the processing chain. One manipulator
might remove unwanted data before the next tool converts the remaining data
into another format, for instance with the msb_format.

Data sink
A data sink specifies the end of the processing chain. A typicall sink is the
screen output (of a command line window) or a file storing the data.
But a data sink might be also your own application which read the resulting da-
ta and processes it for your own purpose, for instance a LabView application.
The msb_split tool is a representative data sink. The program doesn’t for-
ward the data to other tools but stores it as serveral files on your hard disk.

Some examples
The program folder of the MSB-Analyzer software will be added automatically
to the search path for executables during installation. For a first try, you just
have to open a command shell (console). We will use the example records
coming with the software package as a data source. Therefore you don’t need

188

19.2. RECORD DATA WITH MSB_RECORD

a connected analyser.
Go to the example directory and pipe a record into the msb_format program
like:

type DataView\9bit.msblog | msb_format

Linux users have to use the cat command instead of type. The command
type recordworks as a data source like an active recording with msb_record.
msb_format is the manipulator tool in the processing chain and forwards the
result to the command line window which stands for the data sink and just dis-
plays the result on your screen.

Now use the msb_split tool to split the same record file in several little pieces.

type DataView\9bit.msblog | msb_split -n1000

Without any arguments msb_split simply creates the following two files in the
current directory named as xaa.msblog and xab.msblog.
You will find more detailed information about these tools in the program relating
sections below.

19.2 Record data with msb_record
As the name indicated this program controls the operating and recording of a
connected MSB-Analyzer. At the same time msb_record functions as a data
source for all other tools.
Called without any further arguments msb_record searches for a connected
analyser, transferes the firmware if needed and starts a new record of all trans-
mitted data bytes with 115200 baud and 8N1 protocol as default.
If the tool doesn’t find any device or detects more than one analyser, it will give
you appropriate message. In the last case you can select the proper analyser
by passing the serial number of the analyser to the program.

msb_record writes the recorded data directly to the standard output to ma-
ke them available for the other tools. We will illustrate this with the following
example, inputed directly on the command line window:

msb_record | msb_format

All recorded data are forwarded with the pipe operator ’|’ to the next program
in the tool chain, here the msb_format1. The latter reads all data received
from it’s standard input, makes some transformation and put the result to the
standard output again. In this case - unless there are more programs in the
queue, it writes it just as a simple informal list.

1 3.501328 A "104 0x68 ’h’ "
2 3.501414 A "101 0x65 ’e’ "
3 3.501501 A "108 0x6C ’l’ "
4 3.501588 A "108 0x6C ’l’ "
5 3.501675 A "111 0x6F ’o’ "

1You can of course execute the msb_record tool standalone. But because the outputed data
is in a binary format this doesn’t make any real sense.

189

KAPITEL 19. COMMANDLINE API

Press ’Ctrl+C’ to abort the program.

In general you will use msb_record either in a combination with other com-
mand line tools as shown above or to write the output directly into a file. There
are two ways to save the recorded data as a file. You can redirect the output
like:

msb_record > output.msblog

Or you pass a file name as an additional argument:

msb_record -o output.msblog

Connection settings and events
We didn’t bother about the connection properties so far and called the record
tool implicitly with its default settings. We restricted ourself also to record only
the transmitted data bytes and ignored the change of the line states.
Imagine you have a serial connection working with 38400 baud, 7 databits and
an even parity. The MSB-Analyzer doesn’t worry about the number of stop bits,
but nevertheless we will assume 2 stop bits here.
Beside the raw data bytes we like to analyse the line level change of both data
transmission lines (here RxD, TxD) as well as the handshake control lines RTS
and CTS. The call of the msb_record tool is described as follows:

msb_record --baudrate=38400 --protocol=7E2 --logsignals=2,3,6,7

or in a short form:

msb_record -b 38400 -p 7E2 -l 2,3,6,7

We will show another way to pass the parameters via a configuration file later.
For now and most important:
Don’t separate the arguments from the associate program! In the command line
above all msb_record parameters have to specified before the pipe operator.

msb_record -b 38400 -p 7E2 -l 2,3,6,7 | msb_format

This applies for all tools, programs belonging to the MSB-Analyzer and also other
ones.

Usage in your own application
Maybe you thinking that’s all pretty interesting, but how can I use these tools
within my own application?
Your application only has to fulfil the following requirements:

1 Execution of any command from within your application.
2 Read of a file opened/written by another process.

That sounds worse than it is.
The most programming languages come with a special function to execute an
external command. For instance: C has the system and popen function, Lab-
View offers a System Exec VI. You can call an external command mostly in two
ways:

190

19.2. RECORD DATA WITH MSB_RECORD

First: The caller (your application) waits until completition of the command. We
don’t recomment this, because it would block your application.
Second: The command chain is executed as a so called detached process. In
this case the function (with the command chain) returns immediately to the cal-
ler and the command chains works parallel to your application.

So far as good, but how can you get the results of the command chain?
Your tool chain can write the results in a file where you read them back from
within your application. Or: You fetch the results directly from the tool chain
output. Which of one fits you best depends on your application language.

The detached tool chain process will be stopped and closed automatically at
the end of your application. But there is another option to control the data col-
lection of a parallel running msb_record.

Remote control
The msb_record tool contains a simple and easy to access inter process
communication method which works for both platforms (Linux and Windows)
equally.
Sending a command to a running background process is done by calling the
msb_record program with the parameter ’-r command’ or executing the com-
mand from your application via system call.

Just open two command shells and start a record in one of them with:

msb_record | msb_format

The connected MSB-Analyzer is initialized and the recording is started, indica-
ted by a permanent lighted red LED1. It doesn’t matter if there aren’t any data
available.

Now switch to the second console (command window) and stop the recording
with:

msb_record -r stop

The execution of the stop command can be checked by watching the analyzer
red LEDs. They are blinking alternatively again.
To start or resume the recording repeat the call but now with the command
’start’:

msb_record -r start

The command msb_record -r quit ends the process respectively the tool
chain and closes the output channel/file.

Synchronous recording with two or more analyzers
Every analyzer has a MSB Link connector to synchronize the recordings of two
or more devices (using an MSB Port-Link Doubler from IFTOOLS) with one mi-
crosecond resolution. We described this special operation and its benefits in
detail in the chapter 18.

191

KAPITEL 19. COMMANDLINE API

But synchronized recordings are also possible with the command line tools.
Here we therefore will explain the handling of two linked analyzers via the API
tools.

Let us assume that you have two analyzers. Both are connected via the MSB
Link sockets. When using the graphical software you first start a program ap-
plication for each analyzer. In a second step you have to select one of them
as ’Master’. The remaining analyzer becomes a ’Slave’ automatically. A proper
setup provided, you then just have to click the record button in the Master app-
lication to launch the recording.

Command line tools are different by nature. The program msb_record has
neither a dialog to choose ’Master’ or ’Slave’, nor a button to start the record
when both analyzers are connected and ready. So you have to tell the analy-
zer which one is a ’Master’ and which is the ’Slave’ by passing an according
program argument. And since there are at least two analyzers connected with
your computer, you have to pass the serial number of the master or slave too.
Both commands - for the ’Master’ and ’Slave’ - must be started in their own
shell (or DOS command window).
At first we input the record command for the ’Master’ with the serial number
MSB01000. We use the default settings and pipe the output directly through
the formater tool. Please adapt the serial number to your own analyzer.

msb_record -nMSB01000 --sync-mode=master | msb_format

As soon as you hit the Enter key, the command prompts you with a request
to start FIRST the ’Slave’, THEN press Enter to begin with the record. What’s
that?
A synchronized recording requires the exchange of certain information bet-
ween both analyzers before they could continue. For instance and most of all
time relevant data.
So let’s open a second command shell (or DOS box) and start the slave with:

msb_record -nMSB02000 --sync-mode=slave | msb_format

Again: The serial number is just a placeholder. Don’t forget to change it to the
number on your second analyzer!
Both analyzer are now in a ’ready for record’ state, their red LEDs flashing
alternately. And more important! The slave device is active and able to process
the timing data the master will broadcast with the beginning of the record.
If anything is arranged, hit the Enter key in the master shell.
Two things are happening in the following:

1 The master passes the correct record start time to the slave2.
2 The master gives the start command and provides the slave periodically with

synchronous impulse over the link cable.

Afterwards both commands (in both shells) are interacting independently and
behave as when executing a normal (not synchronous) record. You can extend
the command with additional parameters or pipe constructs and write/split the
output of the master and/or slave in different files.
Press Ctrl+C in each command shell to finish the according process.

2Remember that the master and slave must not run on the same computer.

192

19.2. RECORD DATA WITH MSB_RECORD

Remote control a synchronous record
Starting two master/slave processes via command line may be sufficient for
small or rarely happening tasks. Beside this the command line tools are often
used in scripts to automatic certain jobs. And here the preliminary description
reveals a pitfall. How can you input the Enter key requested by the master when
executing the command in a batch or script file?
You can - of course - using a process pipe and redirect an Enter to the master
command process. But it isn’t always trivial, and luckily there exists an easier
solution too: Broadcasting a remote command:
First a little batch file for Windows user:

1 rem Synchronous record
2 echo " { } I n i t i a t e master . . . "
3 s ta r t msb_record . exe − i −nMSB01000 −−sync−mode=master −−paused −o master . msblog
4 timeout 2 >nul
5 echo " { } I n i t i a t e s lave . . . "
6 s ta r t msb_record . exe − i −nMSB02000 −−sync−mode=slave −o slave . msblog
7 timeout 2 >nul
8 echo " Star t synchronous record . . . "
9 msb_record . exe −r s ta r t

And here the Linux variant:
1 # ! / b in / bash
2 echo " I n i t i a t e master . . . "
3 msb_record − i −nMSB01000 −−sync−mode=master −−paused 2>>/dev / n u l l −o master . msblog &
4 sleep 2
5 echo " I n i t i a t e s lave . . . "
6 msb_record − i −nMSB02000 −−sync−mode=slave 2>>/dev / n u l l −o slave . msblog &
7 sleep 2
8 echo " S t a r t record "
9 msb_record −r s t a r t

The procedure is similar for both operating systems.
First we start a background process for the master (line 3) and force him to wait
till we send him an according record start command by passing the --paused
parameter.
Windows (or the DOS shell) uses the start command, while Linux users put
the whole command into background by attaching an ending ampersand ’&’. In
Linux we also redirect the stderr (2) channel to /dev/null.

Background processing means: The command line is executed and detached
from the script executing shell (or DOS window). The command doesn’t block
and the script can proceed immediately with the next instruction.
Line 4 (and 7) gives the initialization a few seconds. The DOS command shell
has no particular ’sleep’ command, but the timeout may serve as well3.
The slave is started in line 6 and also executed as a background process.

At this point both analyzers are ready for recording and the master ’waits’ for
the trigger. Instead of pressing the Enter key (which isn’t possible, since the
master process is detached from any keyboard) we send him a remote start

3timeout is not part of Windows XP. An alternative way to simulate a given pause of 2s is:
ping 127.0.0.1 -n 3 >nul

193

KAPITEL 19. COMMANDLINE API

command in line 9.
Thereafter both commands run independent of each other. The master stores
the received data in the passed output file (-o) master.msblog. The slave puts
its data into slave.msblog.
The internal synchronization through the MSB Link connection guarantees that
the recorded events in the two record files are matching with the usual precision
of one microsecond.

msb_record program parameters
Call the program with:
msb_record [OPTION]...

[OPTION] can contain one ore more of the following program parameters. If
no parameter is set the default parameters are used. The following parameters
can be send to the program at start. All recorded data will be writen to the
standard output by default.
To send a command to a running background process the remote parameter
indication ’-r’ has to be entered followed by the command (start, stop, quit).

Parameter Description

-b rate
--baudrate=rate

Baudrate of the recorded connection, default is
115200.

-c
--config-file=file

Uses the settings specified in the given config file.

-C
--create-config-file

Creates a new config file msb_tools.config in the
current directory.

-d
--device=port

use the analyser at the given port exclusively.

--disable-dataA Switches off the recording of all data bytes received on
Port 1. Default is on.

--disable-dataB Switches off the recording of all data bytes received on
Port 2. Default is on

-h
--help

Help. Output of all program parameters.

-i
--initiate

Transfers the firmware to the analyzer, even it is alrea-
dy loaded.

194

19.2. RECORD DATA WITH MSB_RECORD

--io1=operation Use digital auxiliary channel IO1 (only MSB-RS485).
The following values are valid:
0 : Input with pull down
1 : Output static 0
2 : Output static 1
3 : Output of the bus direction
4 : Output of the bus validness
5 : Output CHN1 validity
6 : Output CHN2 validity
7 : Output CHN3 validity
8 : Output CHN4 validity
9 : Input with pull up

--io2=operation Use digital auxiliary channel IO2 (only MSB-RS485).
Valid values see IO1 above.

-l list
--log-signals=list

Specifies the signal lines which are logged by the
analyzer. The lines are numbered from 1 to 8 as
they are displayed in the analyzer control program
(counted from left to right). For instance: -l 2,3 oder
--log-signals=2,3,6,7.

-L
--logic-mode

Switches the inputs to logic signal levels (only MSB-
RS232). Default are RS232 signal levels.

--memory-test Forces the analyser to executes an internal memory
test.

--nice=niceness The nice parameter controls the msb_record idle
CPU time. Valid values are 0...10. A value of 0 means
a nearly 100% CPU consumption, default is 1. A
niceness value of 0 is only recommended in case
of very fast data rates and high data flow-rate. I.e.
msb_record --nice=0

-n serno
--serno

Use the analyzer with the given serial number serno.

--output-buffering Activate the internal output buffer, which increases the
performance and avoids gaps in data records with high
data transfer rates.
Please note: With an active puffering the recorded
events doesn’t occurs immediately in the following
tool of the command chain, for instance if you like to
see all recorded events in a console window via the
msb_format tool.

-o file
--output=file

Output file. Default is the standard output (console).

195

KAPITEL 19. COMMANDLINE API

--paused Starts the analyser in paused state. The record begins
only after the program receives a remote start com-
mand.

-p protocol
--protocol=protocol

Protocol settings of the connection as combination of
number of data bits (5 to 9), parity (N)one, (E)ven,
(O)dd, (0)off, (1)on and stopbits (1,2). E.g. 8N1 or 7E2.
Default is 8N1.

-r Command
--remote=command

Remote. Sends the following command to an already
running program. The following commands are suppor-
ted:
quit quits and removes the background process
start starts or resumes a recording
stop stops or pauses the recording

--show-serials Shows all available serial ports.

--show-analyzers Shows all available (connected) MSB-Analyzer.

--sync-mode=mode Set the synchronization mode (autonom, master, sla-
ve) when using two or more analyzers for synchronous
recordings. Default is autonom.

-t num
--time-delay=num

Transfer delay. Slows the firmware transfer down by the
indicated number num. 0 is no delay (default), maxi-
mum is 100.

-u
--unique-file

Stores the recorded data in the current working
directory in a record file with an unique name
like YYYYMMDD-HHmMMmSSs.msblog, for instance
20110324-03h04m41s.msblog.
This parameter is especially interesting in those app-
lications where the record should start automatically
after a (re)boot of the PC.

-v
--verbose

Verbose, output of additional Information. .

-V
--verbose

Output of the program version.

-w wiring
--wiring=wiring

Set the bus wiring (only MSB-RS485). The following
values are allowed:
0 : 2-wire tapping
1 : 2-wire segment analysis
2 : 4-wire tapping
3 : 4-wire segment analysis (masterbus)

19.3 Formatted output with msb_format
The msb_format tool allows you to format the recorded analyser data for your
own purpose. For instance if you like to see the data as CSV (comma sepa-

196

19.3. FORMATTED OUTPUT WITH MSB_FORMAT

rated values). Without any parameter you will get a list of the occured events,
each one with informations about the time, the kind of event, the data value or
line state. This complies with the format specifier ’I’ which is the default setting.

To specify your own output format, call the program with the format parame-
ter -F or --format=. All following characters are seen as format definition. A
space character or all ’white space’ characters like Tab or Enter end the format
string. If you want to define a space character as part of the output you have to
quote it. How to do this is explained in chapter 19.3.
We restrict ourselves to the simple case of displaying the data bytes together
with their time stamps. In every line the time in seconds and the data byte shall
be listed, separated by a comma. The appropriate format string4 is: T,B

We will use an example record as data source so you can try the following
samples without a connected analyzer. Please keep in mind, that it will be work
the same way with the msb_record tool.
Open a command shell (again), go into the DataView example folder
(i.a. msb-VERSION/examples/DataView) and input:

type modbus-ascii.msblog | msb_format -FT,B

The output looks like the following:

...
5633.304127,48
5633.305162,70
5633.306197,57
5633.307226,13
5633.308261,10

The output can be changed from ASCII to binary representation. ASCII means
that the decimal binary value is coded into ASCII numbers as a string (e.g.’104’
= hex binary 31,30,34) while binary means the value itself which is displayed
according to the ASCII table (in this example as ’h’).
Binary mode makes sense if you want to write the data into a file and read in
by another application. An inconvenient conversion of the ASCII representation
into native program types as double or integer might be omitted.
The format identifier % activates the binary output while @ switches back to
ASCII (default). The following example displays the characters in their binary
value:

type modbus-ascii.msblog | msb_format -FT,%B@

Please note that in binary mode no line feed is issued. Therefore we switch
back to ASCII mode after each binary data output.

...
5633.304127,0
5633.305162,F
5633.306197,9
5633.307226,
5633.308261,

4A list of all format identifiers can be found in the format identifier table.

197

KAPITEL 19. COMMANDLINE API

Disable line feed in ASCII Mode
To make the output in ASCII mode more readable a linefeed is automatically
attached after every output line. You can disable this behavior by calling the
program with the parameter –disable-linefeed or by ending the format string
with % (binary mode).

Output of any character
You want to insert a non-printable character or define a line feed, independent
of the operating system5.
Use the format identifier #ddd to define any character which shall be output
instead of this identifier. To separate the output of the data bytes by a tabulator
enter the decimal value of this character. e.g.

type modbus-ascii.msblog | msb_format -FT#009B#009S

Or: Separate the values by a space char (decimal 032):

type modbus-ascii.msblog | msb_format -FT#032#032S

To generate a line line feed under windows with a single linefeed character you
have to use its decimal value (010). To disable the standard system dependent
line feed character sequence in ASCII mode you end the string with % to switch
to binary mode:

type modbus-ascii.msblog | msb_format -FT#009B#009S#010%

The character value has to be entered with three decimal digits (0 to 9). Any
other input leads to an error message.

File output
You also can redirect the output to a file. Call the program with the additional
parameter ’-o filename’.
Only the via format string defined outputs are send to the file, no status mes-
sages or auxiliary outputs which you might have enabled through program pa-
rameter.
A simple file output is done with:

type modbus-ascii.msblog | msb_format -FT#009B#009S#010% -o test.log

Format parameters
The following identifiers are defined as format parameters. Please note that
not mentioned characters are output in the same way. Exceptions are the whi-
tespace characters that are all blanks, tabs and enter which are used to end
the format string.

5Under linux all lines are ended with a single linefeed, while Windows uses a combination of
Carridge Return/Linefeed.

198

19.3. FORMATTED OUTPUT WITH MSB_FORMAT

Term Meaning Description

% Binary Flag Switches to the binary output for all following para-
meter.

@ Ascii Flag Switches to the ASCII output mode for all following
parameters.

#ddd Character Output of any printable or non-printable character,
specified as a 3-digit decimal value. The allowed va-
lue range is 0 up to 255. e.g. the line ending carridge
return character is #013

[...] [format] User defined date and time output, see table below
19.3.

a Alteration Shows the alteration in the signal lines or data rela-
ting to the last event. I.e. +TxD -RTS means a rising
of the TxD line and a falling of RTS.

A All line states Shows all signal states and/or alterations in a
representive text format as shown in the EventView.
For instance:
-^DCD,^^TxD,^^RxD,^^DSR,-^DTR,^^CTS,^^RTS,-^RI

b Data-Byte Data byte output as 8 bit value. In ASCII mode re-
presented as 2-digit hexadecimal number with lea-
ding zeros, e.g. ’41’ is the character ’A’, ’0A’ the li-
nefeed character.

B Data-Byte The same as ’b’ but as decimal number output in
ASCII mode, for instance: ’65’ means the character
’A’, ’10’ the linefeed.

d Date/Time Timestamp output representation in the ISO 8601
format YYYY-MM-DD HH:MM:SS (ASCII mode).
Output as 32 bit value containing the seconds sin-
ce the Epoch (00:00:00 UTC, January 1, 1970) in
binary mode.

D Excel Date Excel date as days from 1.1.1900. Output as 32 bit
value (binary) or decimal number (ASCII)

e Error Transmission error. Errors are outputed as their lea-
ding charcaters in ASCII (’F’rame, ’P’arity’, ’B’reak)
or as a 8 bit integer value (0:no error, 1:frame, 2:pa-
rity, 3:break) in binary mode.

i Info shows all informations in a more human readable
form. Only for testing purpose. Don’t use this para-
meter with others.

199

KAPITEL 19. COMMANDLINE API

l Logic-Level Outputs the current logic state of all 8 signal lines.
A set bit correlates with a logic line level of ’1’. The
bit order is equal to the signal lines in the control
program. Bit 0 is the first (left), bit 7 the last (right)
signal.
The state information is written as a 8 bit value in
binary mode and as a 2-digit hex number with lea-
ding zeros in ASCII mode, e.g. ’7F’ means all lines
except for Signal 8 have a logical ’1’ level.

L Logic-Level The same as ’l’. In ASCII mode the output is written
as a decimal number, e.g. ’255’ means all lines have
a logical ’1’ level.

M Milliseconds Time stamp of the event in milli seconds as distance
to 0h00 of the current day. The output is either a
decimal number (ASCII) or a 32 bit value (binary).

o dt last event Outputs the time since the last event in seconds as
a floating point number in ASCII or as a double (8
byte) value in binary mode.

O dt same event Outputs the time since the last same event in se-
conds as a floating point number in ASCII or as a
double (8 byte) value in binary mode.

P Position Running event counter starting with the first output.
The output is either a decimal number (ASCII) or a
32 bit value (binary). The event position starts with
zero.

s Data/State Outputs either the data up to 9 bit (event type A/B) or
the line states as a combination of logical and valid
state. The upper 8 bits contains the logical state of
each line. See specifier ’l’ and ’v’ and section 12.4.
Data or line state are output as a 4-digit hex number
like F12E, in binary a 16 bit value.

S Source Source or direction of the data byte. Data chan-
nel A=1, Data channel B=2. A zero means no data
event. Outputed either as decimal number (ASCII)
or as 8 bit value (binary).

t event type Output the event type as a character in ASCII mode:
A (data received at port A/channel 1), B (data recei-
ved at port B/channel 2), L (logic or valid line state
changed) and as a 8 bit value in binary mode, range
[0...2].

200

19.3. FORMATTED OUTPUT WITH MSB_FORMAT

T Time stamp Microseconds precise time stamp of the event in
relationship to the start of the recording. Output in
seconds as floating point number with 6 digits after
the decimal point (ASCII) or as 8 byte floating point
number in double precision.

u usec part the microseconds fraction of the timestamp. You can
use it to complete the normal date/time in ASCII
with the left microseconds like: -Fd+u results to
2012-04-11 15:57:40+184935. In binary mode
the usec are stored as a 32 bit value.

v Valid-Level Output the current valid state of all 8 signal lines. A
set bit correlates with a valid line level. The bit order
is equal to the signal lines in the control program. Bit
0 is the first (left), bit 7 the last (right) signal.
The state information is written as a 8 bit value in
binary mode and as a 2-digit hex number with lea-
ding zeros in ASCII mode, e.g. ’7F’ means all lines
except for Signal 8 have a valid signal level.

V Valid-Level The same as ’l’. In ASCII mode the output is written
as a decimal number, e.g. ’255’ means all lines have
a valid signal level.

w Data-Word A 9 Bit Data byte is output as a 16 Bit binary value
0 to 511. In ASCII this value is displayed as a 3-digit
hexadecimal number with leading zeros, e.g. ’105’
or ’0FE’.

W Data-Word Like ’w’, but writes the output in ASCII mode as a
decimal number. For instance: ’261’ means the sa-
me as the hex value ’105’ from above.

x1...8 signal level Output the Tri-State signal level of an individual si-
gnal. The signal number 1...8 correspondences with
the numbering in the control program. The signal
state is output as -1, 0 or 1 in ASCII and as signed
8 bit value in binary.

User defined date and time
A string enclosed between two square brackets is interpreted as a special da-
te/time format. With it you can output the timestamps in your very own format,
according to your application. An example:

type modbus-ascii.msblog | msb_format -F"[%d.%m.%Y %H:%M:%S],u#115"

results as:

27.08.2010 09:41:04,303098s
27.08.2010 09:41:04,304127s
27.08.2010 09:41:04,305162s
27.08.2010 09:41:04,306197s

201

KAPITEL 19. COMMANDLINE API

27.08.2010 09:41:04,307226s
27.08.2010 09:41:04,308261s
...

The msb_format tool supports the following user defined date/time format
specifiers. Every parameter must start with a leading %-character. In case of
using it in a Windows batch file you must double each %6. Otherwise the com-
mand will throwing an ’Invalid format parameter’. The reason: The Windows
command interpreter uses the % for referencing the script arguments.
To avoid this, double each % in the msb_format argument. For instance: The
example above:

type modbus-ascii.msblog | msb_format -F"[%d.%m.%Y %H:%M:%S],u#115"

must be changed to:

type modbus-ascii.msblog | msb_format -F"[%%d.%%m.%%Y %%H:%%M:%%S],u#115"

Please note!
The command shell (in both, Linux and Windows) uses white space char-
acters (here the space between date and time) as a parameter separator.
Therefor you have to insert the complete format string between two quoting
marks.

Parameter Description

%a the abbreviated weekday name

%A the full weekday name

%b the abbreviated month

%B the full month name

%c the preferred date and time representation for the current lo-
cale

%d the day of month as a decimal number [01...31]

%e like %d, the day of the month as a decimal number, but a
leading zero is replaced by a space [’ 1’...’31’]

%H the hour as a decimal number, range [00...23]

%I the hour as decimal number, range [00...12]

%j the day of the year as deciaml number, range [001...366]

%m the month as decimal number, range [01...12]

%M the minutes as decimal number, range [00...59]

%p ’am’ or ’pm’ (according to the given time value)

6This exclusively applies in Windows, not Linux

202

19.3. FORMATTED OUTPUT WITH MSB_FORMAT

%S the seconds as decimal number, range [00...59]

%T the time in 24-hour notation like %H:%M:%S

%U The week number of the current year as a decimal number,
range [00...53], starting with the first Sunday as the first day
of week 01

%w the day of the week as decimal number [0...6], Sunday being
0

%W The week number of the current year as a decimal number,
range [00...53], starting with the first Monday as the first day
of week 01

%x The preferred date representation for the current locale with-
out the time

%X The preferred time representation for the current locale with-
out the date

%y the year as decimal number without the century [00...99]

%Y the year as decimal number including the century

%Z the time zone, for instance CEST

%% the literal % character

msb_format program parameters
Call the program with:
msb_format [OPTION]...

[OPTION] can contain one ore more of the following program parameters. If
no parameter is set the default format -Fi is used and the output is written to
the standard output channel.

Parameter Description

-c
--config-file=file

Uses the settings specified in the given config file.

--disable-linefeed Suppress linefeed in ASCII mode.

-F
--format=formatstring

Output format definition, see format table.

-h
--help

Help. Output of all program parameters.

-o file
--output=file

Output file. Default is the standard output (console).

203

KAPITEL 19. COMMANDLINE API

-s list
--signal-names=list

Pass a comma separated list of signal names for use
in the output. For instance:
--signal-names=DCD,RxD,TxD,DSR,DTR,CTS,RTS,RI

names all signals according to the RS232 DCE stan-
dard names.

--signal-rs232-dte Predefined signal list. Names all signals according to
RS232 DTE.

--signal-rs232-dte Predefined signal list. Names all signals according to
RS232 DCE.

--signal-rs485 Predefined signal list for use with the RS485 analyzer.
Names all signals as like:
--signal-names=CH1,CH2,CH3,CH4,BDIR,BSIG,IO1,IO2

-v
--verbose

Verbose, output of additional Information.

-V
--verbose

Output of the program version.

19.4 Filtering data output with msb_filter
The filter tool will be your first choice when you have to extract a special part,
certain events or a combination of both from a former record (*.msblog).
For example: If you want to process only the transmitted data in a record without
already existing signal events.
msb_filter reads the data from it’s standard input and write the filtered data
to the standard output like each other tool. The program thereby works like a
real filter between the input and output channel. You can specify the kind of data
or events which are passed through the filter tool by several filter parameters.

type recordfile.msblog | msb_filter [Filterparameter] ...

Please note that you have to give at least one filter parameter because the tool
only passes the data which were allowed by the program arguments7.
Without any filter parameter the program will block all data flow.

Filter data
The following tool chain filters all data bytes (received at port A and B) from
the given file modbus-ascii.msblog in the directory examples/DataView
and stores the result in the new record file data-only.msblog.

type modbus-ascii.msblog | msb_filter -A -B > data-only.msblog

You can also pass the data of the filter tool directly to the input of the formater
tool msb_format.

type modbus-ascii.msblog | msb_filter -A -B | msb_format

7Linux user use the cat command instead of the type command.

204

19.4. FILTERING DATA OUTPUT WITH MSB_FILTER

Filter certain signal events
Beside the data you can also extract the recorded signal changes of every
signal line. For instance if you have a record with all line changes but you are
only interested in the transmitted data and the handshake signals RTS/CTS.
The selection of the passed signals is given as a comma separated list and
corresponds with the --log-signals parameter of the msb_record tool.

type modbus-ascii.msblog | msb_filter -A -B --pass-signals=6,7 | msb_format

The example above extracts the signal changes of the lines 6 and 7 (in RS232
connections the signals RTS and CTS) additional to the transmitted data and
forwards the result to the output formater.

Filter a given record part
The tool msb_split described in the next section is able to split an existing
record in several smaller record files. But imagine if you only need a ’certain’
part of a record file. For instance: The first or last 100000 events? Or you want
to analyze only the events in a specific time range.
The filter tool offers you two further parameters to define a specifiy record
part:

1 --pass-selection=pos1,pos2

pos1 and pos2 specifies the event position (number) of the first and last event
which are passed through the filter tool. For example:

type modbus-ascii.msblog | msb_filter --pass-all --pass-selection=300,310

2 --pass-time=time1,time2

time1 and time2 specifies the start and end of a record part in seconds. The
time is input as a floating point number with the usual micro second precision.

type modbus-ascii.msblog | msb_filter --pass-all --pass-time=3.04,3.05

A Non-blocking filter
The filter tool ’blocks’ all data by default. In case of a range selection you
have to pass all allowed events as parameters. Or you disable (switch off) the
filtering completely with the parameter --pass-all.

msb_filter program parameter
Call the program with:

msb_filter [OPTION]...

[OPTION] can contain one ore more of the following program parameters. You
have to give at least one filter rule. Without any rule the program doesn’t for-
ward any data.

205

KAPITEL 19. COMMANDLINE API

Parameter Description

-a
--pass-all

passes all data and signal events.

-A
--pass-dataA

passes all data received at port A (MSB-RS232)
respectively Channel 1 (MSB-RS485).

-B
--pass-dataB

passes all data received at port B (MSB-RS232)
respectively Channel 2 (MSB-RS485).

-c
--config-file=file

Uses the settings specified in the given config file.

-h
--help

Help. Output of all program parameters.

--pass-all-signals passes the line change events of all lines.

--pass-signals=list passes the line change events of the given lines
as comma separated list. The lines are numbered
from 1 to 8 as they are displayed in the analyzer
control program (counted from left to right). For in-
stance: --pass-signals=2,3,6,7.

-s
--pass-selection=list

pass all events in the given range defined as
comma separated event number from first to last.
The following example passes all recorded events
with the numbers 100 to 200: -s 100,200 or
--pass-selection=100,200.

-t
--pass-time=list

pass all events in the given time range in seconds
as comma separated list with first time, last ti-
me. For instance: --pass-time=1.257,10.231
passes all recorded events in the time range
1.257s until 10.231s.

-v
--verbose

Verbose, output of additional information.

-V
--verbose

Output of the program version.

19.5 Split records with msb_split
When recording data with the MSB-RS485 analyzer large data quantities may
arise. This happens if the searched error does not occur for days and recording
in Fifo mode is not wanted for any reason.
msb_split reads a record file from the standard input and splits it into smaller
record files. You can specify the size and name of the files by use of program
parameters.

Split existing record files
You have a GByte large record file and want to split it into handy parts, especi-
ally as you are interested in the last events of the recording only.

206

19.5. SPLIT RECORDS WITH MSB_SPLIT

Open a console window (Windows command window) and change to the di-
rectory which contains your record file.
enter the following command:

type record.msblog | msb_split -n1000000

With type the record file is sent to the standard output and fed into the stan-
dard input of the msb_split program by the pipe operator ’|’.

Linux users use the cat command instead of the type program.

Depending on the size of the output file record.msblog msb_split divides
them into multiple 1000000 ∗ 24+3072 Byte files Each file (with exception of the
last one) contains 1,000,000 events, each 24 bytes long plus a header of 3072
bytes. In the current directory a number of new msblog files are generated in
the form:

xaa.msblog, xab.msblog, xac.mbslog, ...

You can examine every file individually with the MSB-RS485 analyzer software
by loading them into the program or double click onto it.
By default the program enumerates all files alphabetically with a preceding ’x’.
You can change this behavior by adding a respective parameter. For a 3-digit,
numerical enumeration use the parameters -a and -d (see 19.6).
type record.msblog | msb_split -a3 -d -n1000000

As result you get: x000.msblog, x001.msblog...

You can substitute the preceding ’x’ for your prefix by appending it as last pa-
rameter to the command line.

type record.msblog | msb_split -a3 -d -n1000000 Test

The resulting files now begin with: Test000.msblog, Test001.msblog, ...

This kind of enumeration does not mention the important time range of the
single files. Alternative to the alphabetical or numerical naming you can also
chose date and time of the first event for the name of the split files. The para-
meter is -D.

type record.msblog | msb_split -D -n1000000 Projekt-

The generated files have the following meaning:

Projekt-20110510_15h53m24s.msblog
Projekt-20110510_15h58m31s.msblog
Projekt-20110510_16h02m10s.msblog
...

If you don’t like any prefix, just append an ’empty’ string as the last parameter

207

KAPITEL 19. COMMANDLINE API

(PREFIX):

type record.msblog | msb_split -D -n1000000 ""

With it you will get:

20110510_15h53m24s.msblog
20110510_15h58m31s.msblog
20110510_16h02m10s.msblog
...

Splitting the current recording from msb_record
As the msb_split program reads its data from the standard input you can
use the output of the msb_record tool as data source to directly divide the
recorded events into small portions. This may make sense if you plan long and
large recordings to examine them later.

msb_record -b115200 -p8N1 | msb_split -a4 -d -n1000000

msb_split Program Parameter
Call the program with: msb_split [OPTION]... [PREFIX]

[OPTION] can contain one ore more of the following program parameters. If
no parameter is set the default parameters are used. [PREFIX] is an optional
and freely selectable character string which precedes the file name. The default
is the character ’x’.
All parameters can be used in the short form (a character with a leading ’-’, first
row) or in the long form (second row).

Parameter Desription

-a length,
--suffix-length=length

Number of usable characters for the enumerating
suffix. Default is 2 characters.

-h,
--help

Output of all program parameters.

-c
--config-file=file

Uses the settings specified in the given config file.

-d,
--numeric-suffix

The files are names numerically, the default is al-
phabetically.

-D,
--date-time-suffix

The files names are extended with the date and
time of the first occurred event in the format
YYYYMMDD_HHhMMmSSs.

-n,
--number=quantity

Quantity of the events per file. Each event occupies
24 bytes.

-v,
--verbose

Output of additional information.

208

19.6. TRIGGER A RECORD WITH MSB_TRIGGER

-V,
--version

Output of the program version.

19.6 Trigger a record with msb_trigger
Long-term records in conjunction with the command line tools often serves the
purpose to find a rarely occuring event when the communication goes wrong.
Such an event can be a suddenly failing device only indicated by an invalid te-
legram or a wrong telegram content.
It is obvious that such an event is not easily detectable by simply looking for
a given data sequence. Here we have to take into account the used protocol.
Just consider a bus participant in a Modbus communication which responses
unexpectedly with an error (and only once in hours or days). Although the error
is a two byte sequence (address byte, followed by the error function number),
that sequence may occur more than once in other telegram payloads. The trig-
ger condition is only true, when this search pattern is identical with the first two
bytes of a (Modbus RTU) telegram. And this means, the trigger condition must
be able to detect the start (and end) of every telegram.
Since there are a lot of different protocols out in the world, the msb_trigger
tool uses the same approach as the ProtocolView and provides an inte-
grated Lua script interpreter to let you formulate not only protocol dependent
trigger conditions but also very special conditions you otherwise have no chan-
ce to find.
The msb_trigger program follows the rules of all other command line tools.
You can use it to trigger the output of an active record with:

msb_record | msb_trigger script.lua > record.msblog

Or you can output a special part (specified by the trigger condition) of an alrea-
dy made record:

type record.msblog | msb_trigger script.lua > result.msblog

(Linux user use the cat command instead of type).

Please note!
To simplify the command line we forego any additional msb_record parame-
ters.
You can also output the result of the msb_trigger to other tools like the for-
mater (msb_format) or splitter (msb_split).
The file script.lua specifies the trigger condition. It works similar to the
split() function in the ProtocolView and we will discuss it in detail in the
following.

Define a trigger condition
By default the msb_trigger tool forwards all data events read from the stan-
dard input (provided by the msb_record or an existing record) to the Lua func-
tion trigger.

209

KAPITEL 19. COMMANDLINE API

1 function t r i g g e r (data , i n t v a l , d i r , a l t e r)
2 −− r e t u r n t rue i f the t r i g g e r c on d i t i o n occurred
3 end

The trigger function is called separately for each data direction, so you don’t
have to worry about the data belonging.
Beside the raw data (9-bit) the program passes the time distance to the for-
mer data byte, the direction and if a change (alternation) in the direction has
occurred. Below is the list of all parameters:

1 data→ the current data byte (up to 9 bits)
2 interval → (short intval), the time distance to the former byte in seconds (with

microsecond resolution)
3 direction→ (short dir), the direction or source of the current data event. 1=Data

A, 2=Data B.
4 alternation→ (short alter), true when the direction has changed

You can rename the parameter for your own purpose but don’t change the or-
der of the parameter! It’s also allowed to skip unused parameter from the right.
Let’s take a look for a simple example. The code below triggers when in a Mod-
bus ASCII transmission a telegram end sequence was incomplete and instead
of CR LF (carriage return, line feed) only a CR occurred.

1 las tBy te=−1
2 function t r i g g e r (data)
3 i f l a s tBy te == 0x0D and data ~= 0x0A then
4 −− t r i g g e r
5 return true
6 end
7 las tBy te = data
8 return fa lse
9 end

In addition to the passed parameters above exists a global event object which
covers the actual event and provides additional information like the time stamp
or the current signal levels.
You can access these information by using the event module as described
in the ProtocolView chapter 13.7. The global event becomes especially use-
ful if you need to trigger not for a data but a signal line condition. To give
you an idea about this, here we trigger for a falling edge of the DTR signal.

1 −− the DTR s i g n a l number
2 DTR = 4
3 −− here we s to re the l a s t DTR l i n e s ta te
4 l a s t _ d t r = −1
5 function t r i g g e r ()
6 local d t r = event . l e v e l (DTR)
7 −− check f o r a f a l l i n g edge
8 i f d t r == −1 and l a s t _ d t r == 1 then
9 −− t r i g g e r

10 return true
11 end
12 l a s t _ d t r = d t r
13 return fa lse
14 end

Since msb_trigger by default only processes data events, you have to switch

210

19.6. TRIGGER A RECORD WITH MSB_TRIGGER

the event type read by the tool from data to signal.

msb_record | msb_trigger --trigger-source=signal script.lua > record.msblog

Conditional start of a record with pre and post-trigger
As said before - this is the main purpose of the msb_trigger tool. Instead of
examine a huge amount of recorded data for a given event you better pipe all
data logged by the analyzer to the trigger program.
msb_trigger allows you to specify a number of pre- and post-trigger events
(see section program parameters 19.6). This is especially important if you want
to see the transmitted data before an event occurred and to limit the recorded
data after the trigger happened. Lets say you need to know the communication
around a Modbus RTU checksum failure.
The trigger script below splits the incoming data stream into single Modbus
RTU telegrams by checking the idle time between the received bytes in line
4. Modbus RTU specifies an idle time (or transmission pause) of 3.5 byte for a
telegram delimiter, which means the time for sending 3.5 byte. In case of a posi-
tive idle time the global variable seq (line 2) represents the complete telegram.
The Modbus RTU protocol uses a 2 byte CRC16 checksum as the two last by-
tes of the telegram. The script first checks for a telegram length of at least to
bytes in line 7, then compares the received checksum bytes with the calculated
checksum. It returns true (trigger condition detected) if the comparison doesn’t

match.

1 −− represents the ac tua l te legram
2 seq = " "
3 function t r i g g e r (data , i n t v a l , d i r , a l t e r)
4 i f i n t v a l > p ro toco l . bytepause (3.5) then
5 −− seq represents the cu r ren t telegram , t e s t checksum
6 −− read 16 b i t ckecksum of cu r ren t te legram
7 i f #seq >= 2 then
8 local cks_ is = seq : byte (−1) ∗ 256 + seq : byte (−2)
9 local cks_must = checksum . crc16_modbus (seq : sub(1 ,−3))

10 i f cks_ is ~= cks_must then
11 return true
12 end
13 end
14 −− s t a r t a new telegram sequence
15 seq = " "
16 end
17 −− add the cu r ren t data byte to the ac tua l te legram sequence
18 seq = seq . . s t r i n g . char (data)
19 return fa lse ;
20 end

You will find the trigger script in the examples/API folder.
Modbus RTU telegrams are limited to a maximum length of 256 byte. We want
to record at least 10 telegrams before and after the reception of the telegram
with the invalid checksum, which gives us a pre and post-trigger count of 2560.

msb_record | msb_trigger --pre-triger=2560 --post-trigger=2560 script.lua > record.msblog

211

KAPITEL 19. COMMANDLINE API

Conditional output of an existing record file
msb_trigger not only serves as a trigger of an active record. With it you can
also scan an already existing record for a given event and produce a new re-
cord for a later analysis with the analyzer software.
The program call of the msb_trigger is identical. You just replace the tool
msb_record as the data source with the output of the given record file. For
instance:
type record.msblog for Windows user or cat record.msblog for users
running Linux. In case of the former example (under Windows):

type modbus-rtu.msblog | msb_trigger --pre-triger=2560 ←↩
--post-trigger=2560 script.lua > record.msblog

Scan a record file for certain events
Imagine you just want to know if there are any checksum errors (or - of course -
other transmission or telegram issues). You don’t like to produce a new record
file with the given event. An output with the information which telegrams (time
and/or number) cause the wrong checksum should be satisfied.
The msb_trigger tool provides you with a special parameter --debug which
not only helps debugging your trigger script. It also serves as a switch to sup-
press the output of the recorded events when a trigger condition occurs. The
latter is important to avoid a mixture of printed information and binary event
sequences.
Since the trigger conditions are coded in Lua, it is very easy to output any in-
formation directly from within the script by the Lua print function.
Using our Modbus RTU checksum example again, we will now looking for te-
legrams with an invalid checksum and printing the time when the telegram oc-
curred together with the transmitted (wrong) and expected (valid) CRC16.

1 −− a Lua s t r i n g represen t ing the l a s t rece ived data o f one channel
2 seq = " "
3 −− conta ins the t ime stamp of the f i r s t byte o f the cu r ren t te legram
4 t s = 0
5
6 function t r i g g e r (data , i n t v a l , d i r , a l t e r)
7 i f a l t e r or i n t v a l > p ro toco l . bytepause (3.5) then
8 −− seq represents the cu r ren t telegram , t e s t checksum
9 −− read 16 b i t ckecksum of cu r ren t te legram

10 i f #seq >= 2 then
11 loca l cks_ is = seq : byte (−1) ∗ 256 + seq : byte (−2)
12 loca l cks_must = checksum . crc16_modbus (seq : sub(1 ,−3))
13 i f cks_ is ~= cks_must then
14 p r i n t (s t r i n g . format ("%6 f \ t i s :%04X, must:%04X" ,
15 ts , cks_is , cks_must))
16 end
17 end
18 −− s t a r t a new telegram sequence
19 seq = " "
20 −− s to re the telegram time
21 t s = event . t ime ()
22 end
23 −− add the cu r ren t data byte to the ac tua l te legram sequence
24 seq = seq . . s t r i n g . char (data)
25 −− don ’ t stop pars ing
26 return fa lse
27 end

212

19.6. TRIGGER A RECORD WITH MSB_TRIGGER

Please note! You don’t want to stop the evaluation of the piped record by the
very first trigger condition. Therefore the trigger function MUST return false (li-
ne 26). Otherwise the msb_trigger tool exists without any output.
You can test the script above by yourself. Just open a shell (Linux) or command
window (Windows) in the examples/API folder of the installation directory and
input:

type Modbus-RTU-wrong-checksum.msblog | msb_trigger ←↩
--debug scan-modbus-wrong-checksum.lua

This will give you the following output:

727.232679 is:982E, must:972E
904.113558 is:50A5, must:50A6
949.962685 is:528C, must:508C

There are three telegrams with an invalid checksum in the record at the dis-
played time. The transmitted and wrong CRC16 checksum is output as ’is’, the
expected (calculated) checksum as ’must’. To verify, just load the record in your
analyzer software.

One script for scan and trigger
Up to here you have learned the following applications:

1 How to trigger an active recording
2 How to extract the events around a trigger condition
3 How to scan a record for certain information

Especially the latter application uses the built-in debug feature of the msb_trigger
tool. Unfortunately this code is not compatible when triggering an active record
and so far you have to write two scripts: One for trigger or extract a recording
and a different one to scan a record for special details.
Even if the trigger scripts are seldom very complicated it is nevertheless bothe-
ring to work with two kinds of code.

In this section we will conclude the description of the msb_trigger program
by showing you how to bypass that distinction.

Just remember the purpose between a trigger script and a script which has
to printout certain information. A script intended for trigger a record (or extract
part of a record) always has to return true in the trigger function. And it ne-
ver should output anything, since this would mix-up the resulting record file.
In contrast consider a script scanning a record e.g. for invalid checksums. As
described earlier, the result of the trigger function must be false and you
can use the Lua print function to output valued information.
In a nutshell, trigger scripts create new record files whereas scan scripts pro-
duce anything but NO valid analyzer records!

To solve this contradiction we need to know when a script is called for triggering
a record or called with the --debug argument indicating a scanning purpose.

213

KAPITEL 19. COMMANDLINE API

Luckily the msb_trigger tool defines the internal global variable DEBUG which
reflects the --debug argument. With it it is easy to cover code meant either for
trigger or scan. The script below again pick-ups our Modbus RTU example.

1 −− a Lua s t r i n g represen t ing the l a s t rece ived data o f one channel
2 seq = " "
3 −− conta ins the t ime stamp of the f i r s t byte o f the cu r ren t te legram
4 t s = 0
5 −− the t r i g g e r f u n c t i o n
6 function t r i g g e r (data , i n t v a l , d i r , a l t e r)
7 i f i n t v a l > p ro toco l . bytepause (3.5) then
8 −− seq represents the cu r ren t telegram , t e s t checksum
9 −− read 16 b i t ckecksum of cu r ren t te legram

10 i f #seq >= 2 then
11 loca l cks_ is = seq : byte (−1) ∗ 256 + seq : byte (−2)
12 loca l cks_must = checksum . crc16_modbus (seq : sub(1 ,−3))
13 i f cks_ is ~= cks_must then
14 i f DEBUG then
15 p r i n t (s t r i n g . format ("%6 f \ t i s :%04X, must:%04X" ,
16 ts , cks_is , cks_must))
17 else
18 return true
19 end
20 end
21 end
22 −− s t a r t a new telegram sequence
23 seq = " "
24 −− s to re the telegram time
25 t s = event . t ime ()
26 end
27 −− add the cu r ren t data byte to the ac tua l te legram sequence
28 seq = seq . . s t r i n g . char (data)
29 return fa lse ;
30 end

The important line is 14. Here we use the DEBUG variable to check if the script
is called with the --debug parameter indicating a scan. If so, we output the
time of the telegram with the invalid checksum as well as the expected and
detected CRC16 checksum values (line 15). The code proceeds and returns
false in line 29.
Otherwise we just return true for a detected trigger condition in line 18.
You will find this combined script as like the other examples in the examples/API
folder.

Provided Lua modules
The msb_trigger tool shares several modules with the ProtocolView. These
are:

base16 module : Encoding and decoding functions for base16 sequences (i.e.
used in Modbus ASCII and Intel SRecord). See ProtocolView, section 13.7.

checksum module : Contains checksum algorithms for Modbus RTU (CRC16),
Modbus ASCII (LRC), BACNet (CRC8 and CRC16), DNP3 and CRC16 CCITT
(Kermit). See ProtocolView, section 13.7.

event module : The event module is only available in the trigger function and
gives you access to additional information of the current data event. See Pro-
tocolView, section13.7.

214

19.6. TRIGGER A RECORD WITH MSB_TRIGGER

protocol module : Returns information about the current baudrate, data bits,
parity and stopbits. See ProtocolView, section 13.7.

shared module : As like the ProtocolView also the trigger tool uses two sepa-
rated Lua interpreters for both data directions. The reasons for this implemen-
tation detail and how to sometimes have to share variables between them are
described in the ProtocolView chapter, section 13.7.

You can use the listed modules above in an identical way as described in the
according examples of the ProtocolView chapter. All modules can be called
from any location in your trigger script, except for the event module, which is
only accessible from within the trigger function.

msb_trigger Program Parameter
Call the program with: msb_trigger [OPTION]... trigger-script

[OPTION] can contain one ore more of the following program parameters. If
no parameter is set the default parameters are used. trigger-script is a
Lua script specifying the trigger condition.
Some parameters can be used in the short form (a character with a leading ’-’,
first row) or in the long form (second row).

Parameter Desription

-c
--config-file=file

Uses the settings specified in the given config file.

-h,
--help

Output of all program parameters.

--debug Enables the debug mode.

--pre-trigger=events Specifies the number of events BEFORE the trig-
ger point which are output when the trigger condi-
tion occurs. The default is 4096 events (data an-
d/or line state events).

--post-trigger=events Defines the number of events output AFTER the
trigger condition occurred. The default is infinity,
means that the output runs until the program is
stopped.

--trigger-source=source The kind of events passed through the trigger
script. Default is data but you can also trigger on
certain line state conditions by passing signal
as the trigger source.

-v,
--verbose

Output of additional information.

-V,
--version

Output of the program version.

215

KAPITEL 19. COMMANDLINE API

19.7 One config file for all
As yet we either used the default settings of the several tools or we handled
our specifications to the respective tools via program parameters. Depending
on the count of arguments this approach will lead to complex and - perhaps -
buggy command lines.

Therefore all tools are also manageable by one configuration file which is given
to the first msb_record program as a parameter. msb_record ensures that
all further programs in the command (tool) chain receive the settings in this file8.

A configuration file isn’t part of the analyzer software but you can always create
a new one just by the following command:

msb_record -C

respectively

msb_record --create-config-file

As a result the file msb_tools.config is written in the current directory. Open
the file with your favorite editor (Windows user can use notepad, Linux users
may choose between gedit, kate, or - of course vi, emacs, ...).
The configuration file is well documented. You can simply adapt the parameters
to your application and save the file under a new name. The latter makes sense
because another call of msb_record -C overwrites the file without a warning.

You can - of course - create several individual configuration files, one for each
application. File name and file extension are of no importance.
As soon as you specify a configuration file to the msb_record program, all
further tools in the command chain will take the settings in that file into account.
For example:

msb_record -c meine-config-datei | msb_format

respectively

msb_record --config-file meine-config-datei | msb_format

Perhaps you are wondering about all the examples above which were using
the output of a record file via type or cat as data source instead of the
msb_record tool?

In this case you can specify the configuration file for each tool individually. Each
analyzer tool understands the parameter --config-file or the simple vari-
ant -c. You do not need to change the configuration file. Just call the relating
tool with the required file.

type examples\DataView\9bit.msblog | msb_format --config-file datei

8This only works of course for the analyzer tools.

216

A
ASCII character table

ASCII (American Standard Code for Information Interchange) is
a form for the character coding, which, coming from teletype
machines, now is established as the standard code for character
representation.

The first 32 characters of the ASCII code (hex 00 to 1F) are non printable si-
gns, reserved for control purposes. The main control characters are line feed
or carriage return. They are used with devices which need the ASCII code for
control purposes as printer or terminals. Their definiton is caused for historic
reasons.

Code hex 20 is the blank and hex 7F is a special character which is used for
deleting.

Code ...0 ...1 ...2 ...3 ...4 ...5 ...6 ...7 ...8 ...9 ...A ...B ...C ...D ...E ...F

0... NUL SOH STX ETX EOT ENQ ACK BEK BS HT LF VT FF CR SO SI

1... DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2... SP ! " # $ % & ’ () * + , - . /

3... 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4... @ A B C D E F G H I J K L M N O

5... P Q R S T U V W X Y Z [\] ∧ _

6... ‘ a b c d e f g h i j k l m n o

7... p q r s t u v w x y z { | } ∼ DEL

The upper table regards only 7 bits per byte, the first 128 characters. Extentions
of the ASCII code use the next 128 characters for national language codings or
graphical signs. They are very different in usage. So we will limit the description
to the standard 7 bit version.

217

ANHANG A. ASCII CHARACTER TABLE

218

B
Baudrate measuring

The MSB-RS485 analyzer allows the setting and measuring of any
baudrate in the wide range from 1 Baud up to 1 MBaud with the
unique precision better than 0.1%

The measuring is performed eight times per second, thereby measuring and
averaging the width of singular 0 or 1 bits. The more bits are available in the
measuring frame of 125 ms the more precise the measuring becomes. A higher
data quantity will lead to more precise and stable measuring values.
The analyzer allows three kinds of baudrate measuring.

1 Automodus (UART A + B)

2 CH1 (UART A)

3 CH2 (CH3) (UART B)

In the auto mode either the data of the internal UART A (CH1) or UART B (CH2
respective CH3) is used for measuring, depending on which channel delivers
the first data bit at the start of a 125 ms measuring frame. Therefore the mea-
sured baudrate can vary if both channels use different clock generators with
slightly different baudrates.
This mode is appropriate especially to detect different baudrates on the send
and receive line.

To measure the baudrate of a certain channel the input must be explicitly set.
This is done in the settings dialog of the controll program.

The status window shows 2 baudrates, the set and the measured one. The lat-
ter with its percental deviation to the set rate. Deviations over 50% are indicated
by Out!.

dBaud = 100 ∗ Baudmete−Baudset
Baudset

A negative value indicates a lower baudrate, positive values indicates a higher
baudrate (than the set one). Many bit errors can be explained from incorrect
generated baudrates. The following can be taken as a rough guide value:
Deviations of a maximum of ±3% can be accepted and compensated, higher
deviations should be avoided.

219

ANHANG B. BAUDRATE MEASURING

Baudrate tolerance
Avoid more than 3% deviation in the baudrate generation. This will result in
bit errors.

Because of insufficient slew rates of the EIA-422/485 sender of a examined
transmission line the measuring value can be to high for high transmission
rates. This could also be a hint, that the EIA-422/485 drivers are not correct for
the used baud rate when the baud rate is higher than allowed baudrate for the
EIA-422/485 driver.

220

C
Colors

The MSB-RS485 analyzer software allows you to enter own color
definitions at different places. A selection of predefined colors
can be found here.

The input of color values can be done either in form of a color name (the follo-
wing tables show an overview of the pre-defined color names) or by entering a
RGB (red green blue) value as a hexadecimal number.
Please note, that the names are generally in english, even if you use a German
software version. Some colors consist of compound words as ’indian red’. The
blank between is part of the name and has to be entered explicitely.
In the following list you find besides the color names also the RGB value, which
can be entered alternatively. RGB values can be entered in short or in long
form. The number of digits (3 or 6) determine the used format.

C.1 RGB short form
The short form #RGB reduces each color part to a value between 0 and 15
decimal (0 to F hexadecimal) where R,B,G is represented by this value 0 to
F. That means that each part can be defined in steps of 1/15 of 100%. For
instance red is #F00 and white is #FFF.
For each part is valid that for 0 it is not contained and for F it is fully contained in
the composite color. In the short form 16 x 16 x 16 = 4096 colors are possible.

C.2 RGB long form
The long form #RRGGBB extends the value range for the single color parts
from 16 to 256, which simply is a higher resolution for each color. The resulting
color range is 256 x 256 x 256 = 16777216 possible colors.

C.3 Predefined color names
The predefined color names are a selection from a list of standard colors used
in web site displays. Besides the extended colors an input of ’green’ should be
much more intuitive than #0F0 of #00FF00. The basic colors like ’black’, ’white’,
’red’ ... are easy to memorize.

221

ANHANG C. COLORS

Grey colors

Name/Value Color Name/Value Color

black
#000000

dim grey
#696969

dark grey
#a9a9a9

grey
#bebebe

light grey
#d3d3d3

white
#fffff

Basic colors

Name/Value Color Name/Value Color

blue
#0000ff

green
#00ff00

red
#ff0000

cyan
#00ffff

magenta
#ff00ff

yellow
#ffff00

Extended colors

Name/Value Color Name/Value Color

medium spring green
#7fff00

forest green
#228b22

lime green
#32cd32

dark green
#006400

aquamarine
#70db93

spring green
#00ff7f

medium aquamarine
#66cdaa

sea green
#238e6b

medium turquoise
#70dbdb

dark turquoise
#00ced1

steel blue
#236b8e

sky blue
#3299cc

slate blue
#007fff

light steel blue
#b0c4de

cornflower blue
#6495ed

navy
#23238e

medium blue
#0000cd

dark slate blue
#483d8b

222

C.3. PREDEFINED COLOR NAMES

Name/Value Color Name/Value Color

medium orchid
#9370db

medium slate blue
#7f00ff

blue violet
#8a2be2

dark orchid
#9932cc

purple
#b000ff

orchid
#db70db

violet red
#cc3299

orange red
#ff007f

maroon
#b03060

salmon
#6f4242

khaki
#f0e68c

wheat
#d8d8bf

medium goldenrod
#eaeaad

pale green
#8fbc8f

medium sea green
#426f42

medium violet red
#db7093

turquoise
#adeaea

cadet blue
#5f9ea0

light blue
#add8e6

midnight blue
#2f2f4f

pink
#bc8fea

thistle
#d8bfd8

plum
#eaadea

violet
#4f2f4f

firebrick
#8a2222

brown
#a52a2a

orange
#cc3232

indian red
#cd5c5c

coral
#ff7f50

tan
#db9370

sienna
#8e6b23

gold
#ffd700

medium forest green
#6b8e23

yellow green
#99cc32

dark olive green
#556b2f

green yellow
#adff2f

223

ANHANG C. COLORS

224

D
Windows Trouble-Shooting

The driver, necessary for the operation of the analyzer, is
automatically installed and the device is detected at start of the
program. If this is not the case or other problems arise you will
find some solutions here.

D.1 Windows doesn’t found the analyzer (Part I)
Description
The Analyzer was connected correctly with your system and both red state
LEDs are on. After starting the software, the startup dialog still doesn’t detect
it.

Solution
At first remove all USB devices except Mouse and keyboard from your PC.
Connect The analyzer to your PC and look up the assigned COM port in the
device manager. Usually a new COM Port should occur after attaching the ana-
lyzer.
If this is the case open a command shell (DOS Box) and change to the instal-
lation program. Usually this is:

C:\Programme\msb-4.6.0

Start the software manually by entering the following:

msb_serv.exe -pCOMxx -nMSByyyyy --force

COMxx is the port number as displayed in the design manager, MSByyyyy
means the serial number of the analyzer. The number sticks on the bottom of
the housing. For instance:

msb_serv.exe -pCOM12 -nMSB01234 --force

If the software starts with this parameter you can add this program parameter to
the MSB start icon under preferences. You will find a description in the chapter
7.13 of the manual.

225

ANHANG D. WINDOWS TROUBLE-SHOOTING

D.2 Windows doesn’t found the analyzer (Part II)
Description
The analyzer is correctly connected to your system and both LEDs light red.
But the device manager does not display a virtual COM port number. (See also
D.1).

Solution
Reinstall the drivers which are necessary for the operation of the analyzer. You
will find the driver on your installation CD in the directory driver

For the installation use the executable driver setup program (recognizable by
the ending .exe)

Please help us with conflicting devices
The firmware loader uses the information which is collected in the USB enu-
meration procedure to detect all serial ports connected to a MSB-analyzer.
Because of the manifold combinations of existing USB devices and drivers we
can not exclude the possibility that in rare cases the program does not detect
the analyzer correctly. To regard these situations in the further program deve-
lopment we need your active help.
Open a command shell (DOS box) and change to the installation directory.
Enter the following command:

msb_serv.exe --verbose

The --verbose parameter forces the program to store a report file (Analy-
zerScan.txt) with information concerning the internal analyzer detection on your
desktop. Just send this file afterwards to support@iftools.com.

D.3 MSB-RS485 Device quit working unexpectedly
Description
The MSB-RS485 device loses its connection and stops working unexpectedly.
The device may appear to work fine when Windows first starts up but later
stops working.

Solution
Use the steps (below) to resolve this issue.
Disable power management on the USB hub.
To preserve power, Microsoft Window XP tries to disable USB when a device
is not used. Under certain circumstances this function does not work and may
cause USB devices to fail to respond when called. To resolve this issue, disable
power management on the USB hub by doing the following:

1 Click Start, and right-click My Computer.

2 Click Properties, then click Hardware.

3 Click Device Manager.

4 Double-click the Universal Serial Bus Controllers branch to expand it.

5 Right-click USB Root Hub, and then click Properties.

226

https://iftools.com/download/index.en.php
mailto:support@iftools.com?subject=Analyzer detection

D.4. OTHER PROBLEM

6 Click Power Management.

7 Deselect Allow the computer to turn off this device to save power.

8 Repeat Steps 5 through 7 for each USB Root Hub.

9 Click OK, and close Device Manager.

10 Reboot you system

D.4 Other problem
Description
Your problem isn’t listed here.

Solution
In case of problems do not hesitate to send us a mail under: support@iftools.com
Please do not forget to inform us about your software and system (Windows
version, Service Pack, 32/64 Bit System) as also a detail description of your
problem.

227

mailto:support@iftools.com?subject=faq

ANHANG D. WINDOWS TROUBLE-SHOOTING

228

E
Linux Trouble-Shooting

New Linux kernels innately contain all what is necessary for the
operation of the analyzer. Nevertheless you can be trapped by
the lot of different Linux variants and their differing
implementations which may make the correct functioning difficult.
How you can bypass the problems are explained in this chapter.

E.1 Linux doesn’t found the analyzer (Part I)
Description
The Analyzer was connected correctly with your system and both red state
LEDs are on. After starting the software, the startup dialog reports an error
(MSB not found).

Solution
Within Linux you have to be member of the group for accessing the /dev/ttyUSBx
device. Open a console and type:

~$ ls -l /dev/ttyUSB?
crw-rw---- 1 root dialout 188, 0 2009-08-26 14:47 /dev/ttyUSB0

On Debian the group is dialout, SuSE uses the uucp group. Make your user ac-
count member of the group and try again. Y can check your group membership
with:

~$ groups
username dialout cdrom floppy audio video plugdev

Please note! You have to logout and new login first until the changes are availa-
ble. A reboot is not necessary.

E.2 Linux doesn’t found the analyzer (Part II)
Description
You have the correct permissions for accessing the /dev/ttyUSBx device.
Anyhow the analyzer wasn’t detected by the software.

229

ANHANG E. LINUX TROUBLE-SHOOTING

Solution
Be sure, that you don’t have an installed Braille driver. Disconnect and connect
the MSB-RS485 again. Open a console and input dmesg.
If the output displays something like this:

~$ dmesg
Detected FT232BM Feb 11 16:14:59 sd kernel: [1575.765756] usb 3-2:
FTDI USB Serial Device converter now attached to ttyUSB0 Feb 11
16:14:59 sd kernel: [1575.881392] usb 3-2: usbfs: interface 0 claimed
by ftdi_sio while ’brltty’ sets config Feb 11 16:14:59 sd kernel: [
1575.885485] ftdi_sio ttyUSB0: FTDI USB Serial Device converter now
disconnected from ttyUSB0

a Braille driver is part of your system. If you have no need for a Braille device,
please remove it from your system. On Debian

~# apt-get remove brltty

should be work.

E.3 Linux doesn’t found the analyzer (Part III)
Description
You have disconnect all serial USB devices (except of mouse and keyboard
if used) from your computer. Unfortunatelly there doesn’t exist any entry like
/dev/ttyUSB0.

Solution
Open a console window and input the following command:

~$ dmesg
usb 1-1: new full speed USB device using uhci_hcd and address 5
ftdi_sio 1-1:1.0: FTDI USB Serial Device converter detected
drivers/usb/serial/ftdi_sio.c: Detected FT232BM
usb 1-1: FTDI USB Serial Device converter now attached to ttyUSB0

The output of the command dmesg shows you, if the kernel recognize the ana-
lyser as FTDI USB serial device and if the associated kernel module ftdi_sio
was loaded by the kernel.
If not, your kernel doesn’t support any USB or the FTDI support isn’t part of
the kernel. If you have compiled your kernel by yourself, please check, if you
have enabled FTDI devices as module or part of the kernel itself. Take a look in
your kernel configuration file (you will find it at /usr/src/linux/.config).
There must be a line like this:

CONFIG_USB_SERIAL_FTDI_SIO=m

If not, you have to recompile your kernel with the line above. Also without the
ftdi_sio module your kernel should register the connected analyser as a
USB device if the USB support working correctly. You can verify this with the
following command line:

230

E.4. RECORDING DOESN’T WORK

~$ cat /proc/bus/usb/devices
T: Bus=01 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 5 Spd=12 MxCh= 0
D: Ver= 1.10 Cls=00(>ifc) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
P: Vendor=0403 ProdID=6001 Rev= 4.00
S: Manufacturer=IFTOOLS
S: Product=MSB-B
S: SerialNumber=MSB00001
C:* #Ifs= 1 Cfg#= 1 Atr=01 MxPwr= 0mA
I: If#= 0 Alt= 0 #EPs= 2 Cls=ff(vend.) Sub=ff Prot=ff Driver=ftdi_sio
E: Ad=81(I) Atr=02(Bulk) MxPS= 64 Ivl=0ms
E: Ad=02(O) Atr=02(Bulk) MxPS= 64 Ivl=0ms

The example above shows a analyser MSB-RS485 (MSB-B) from IFTOOLS with
the serial number MSB00001.
You should get this output in any case or your kernel have some trouble with
USB devices in general. Can you confirm, that your Linux system works with
other USB devices? Please contact us with detailed information about your
system, see section E.9.

Please help us with conflicting devices
The firmware loader uses the information which is collected in the USB enu-
meration procedure to detect all serial ports connected to a MSB-analyzer.
Because of the manifold combinations of existing USB devices and drivers we
can not exclude the possibility that in rare cases the program does not detect
the analyzer correctly. To regard these situations in the further program deve-
lopment we need your active help.
Open a command shell (terminal) again and change to the installation directory.
Enter the following command:

~$./msb_serv --verbose

The --verbose parameter forces the program to store a report file (Analy-
zerScan.txt) with information concerning the internal analyzer detection on your
desktop. Just send this file afterwards to support@iftools.com.

E.4 Recording doesn’t work
Description
The analyzer seems to be correctly detected and the firmware was loaded.
After starting of a recording session no data are recorded.

Solution
The analyzer indicates its correct firmware initialization by an alternating blin-
king of both red LEDs. If both LEDs are permanently on after starting the soft-
ware, the firmware was not correctly transferred into the device. The reason
is the high firmware transfer rate which can cause errors (very rare) in some
driver implementations.
You can reduce the transfer rate for the firmware initialization via program para-
meter. Call the analyzer software with the following additional parameter from
the installation directory:

~$./msb_serv -r 20

231

mailto:support@iftools.com?subject=Analyzer detection

ANHANG E. LINUX TROUBLE-SHOOTING

The value of 20 correspondents to the reduction of the transfer rate. Allowed
values are 0 (no reduction) up to 50.
As soon as the analyzer firmware was correctly loaded you can add the used
parameter to your msb-4.6.0 desktop icon.

E.5 Segmentation fault during installation
Description
The installation program crashes with a segmentation error. This happens main-
ly within a kde4 enviroment.

Solution
Open a console, make the installation file as executable

~$ chmod +x msb-2.4.0-linux-installer.bin

and start the program with the –mode xwindow like this:

~$./installation-file-linux.bin --mode text

E.6 The help menu Help→Content F1 doesn’t work
Description
You pressed F1 or select the Help→Content F1, but nothing happens or you
get error message. If you open the manuals directly, you can read the operation
manual.

Solution
The MSB-RS485 software needs an additional PDF viewer for displaying the
according manual pages. Within Linux this is the xpdf program, because of
it’s features to reference certain sections via so called named destinations.
You have to install this program if it isn’t part of your system. For reading or
printing the manual you can always use your favorite PDF viewer like kpdf,
okular or GNOME application of course.

E.7 The software doesn’t run within a 64 bit Linux (Part I)
Description
The analyzer software doesn’t start via click on the desktop icon or crashed
with a segfault.

Solution
The analyzer software is build as a 32 bit application. Therefore you have to
install the according 32 bit shared libraries (ia32-libs) to use on amd64 and
ia64 systems.On debian based systems just install the ia32-libs with:

~$ sudo apt-get install ia32-libs

You can - of course - use your package manager or software center.

E.8 The software doesn’t run within a 64 bit Linux (Part II)
Description
You have installed the ia32-libs but if you start the software only a small window
appears (Ubuntu 11.04 or higher) or nothing happened.

232

E.9. OTHER PROBLEM

Solution
Ubuntu’s method of creating the 32bit versions of these packages for the 64bit
ubuntu has a bug caused by a hard coded path where the gdk-pixbuf libra-
ry looks for several modules loaded at runtime. We recomment the following
workaround:
Open a terminal window and input:

gedit ~/Desktop/msb-4.6.0.desktop

Add the additional line: Path=/home/jb/msb-4.6.0.

Replace the line: Exec=/home/jb/msb-4.6.0/msb_serv
with:

Exec=env GDK_PIXBUF_MODULE_FILE=/usr/lib32/gdk-pixbuf-2.0/2.10.0/loaders.cache msb_serv

Now the changed desktop file has to look like:

[Desktop Entry]

Type=Application

Version=0.9.4

Name=msb-4.6.0
Comment=Starts the msb program

Icon=/home/jb/msb-4.6.0/msb-48.png
Path=/home/jb/msb-4.6.0
Exec=env GDK_PIXBUF_MODULE_FILE=/usr/lib32/gdk-pixbuf-2.0/2.10.0/loaders.cache msb_serv

Terminal=false

Name[en_US]=msb-4.6.0

Save the file and start the software by click on the icon.

E.9 Other problem
Description
Your problem isn’t listed here.

Solution
We are very much interrested that our software can be used under Linux with-
out problems. Because of the large numbers of different Linux distributions this
is not always easy. Therefore:
In case of problems do not hesitate to send us a mail under: support@iftools.com
Please do not forget to inform us about your software and kernel version, 32/64
Bit system, Linux distribution, desktop environment and a detail description of
your problem.

233

mailto:support@iftools.com?subject=faq

ANHANG E. LINUX TROUBLE-SHOOTING

234

Glossar

Notation Description
CSV Comma Separated Values, Comma Separated

Values, text file format in which the content of
single data sets are stored in independent li-
nes, separated by commas. 55

ETX End of Text, in the ASCII character set defined
as hex 0x03. ETX marks the end of a message
or datagram. 77

Firmware Firmware describes the software contained in
an electronic device which is responsible for its
function. Firmware can be a fixed and unchan-
geable part of the hardware or can be loaded
into the device before the first start. 27

FLEXUART An IFTOOLS in-house developed UART al-
lows high-precise setting and measuring of any,
even non standard baud rates in the range from
1 Baud up to 1MBaud with 0.1% accuracy. 28

Full-Duplex Shortened as HD or HDX. A full-duplex, or
sometimes double-duplex system, allows com-
munication in both directions, and, unlike half-
duplex, allows this to happen simultaneously. 1

Half-Duplex Shortened as HD, or HDX. A half-duplex sys-
tem provides for communications in both direc-
tions, but only one direction at a time (not si-
multaneously). 1

Lua Lua is a dynamically typed language intended
for use as an extension or scripting language.
By including only a minimum set of data ty-
pes, Lua attempts to strike a balance between
power and size. 52

Multi-Master Bus nodes which are allowed to initiate a da-
ta transfer with other bus nodes are denote as
active node or master (otherwise they are de-
noted as passive nodes or slaves). A bus with
several masters is called a Multi-Master bus. 1

Multidrop A Communication based on the Master-Slave
principle whereby a master (sender) can speak
to several receivers without expecting any ans-
wer (single direction). 1

235

Glossar

Notation Description
Record depth The number of maximum events or samples

which are contained in the signal recording is
called recording or storage depth and depends
on the available storage medium. 145

RTF A document file format developed by Microsoft
for cross-platform document interchange. 54

RTS/CTS Handshake A hardware flow control implemented by corre-
spondent levels on the RTS or CTS lines. The
RTS/CTS lines of both participants are cross-
connected . By setting the RTS line to logical 1
the receiver requests a stop of the data trans-
mission. Only a few UARTS handle the flow
control in hardware, so that the software dri-
ver have to react fast to recognize the state and
stop the transmission. 1

STX Start of Text, in the ASCII character set defined
as hex 0x02. STX marks the start of a message
or datagram. 77

Timebase The time duration which corresponds to a grid
(10 pixel). The lower the time base the higher
the time resolution of the display. The lowest ti-
me base in the SignalView is 500ns, which cor-
responds to 50 ns per pixel. 147

UART Universal Asynchronous Receiver Transmitter.
Electronic element to send or receive data over
a serial data line. 2, 20

236

Index

Absolute Time, 57
Analyser

multiple, 38
Analysis tools

see Views, 35

base16
decode, 115
encode, 115

box.space, 117
box.text, 118
Break

display, 51
search, 60, 68

checksum
crc16_bacnet, 119
crc8_bacnet, 119
dnp3, 120
kermit, 119
lrc, 120
modbus, 120

Control display
active lines, 31
PC connection, 30
recording capacity, 29
toggle information, 29

Control program
parameter, 40
Short commands, 39
Special parameters, 41

Data View, 51
copy section, 54
export section, 55
Font, 57
Goto address, 53
save section, 54
selection, 54
Short commands, 63
Show control chars, 56

Datagram
displaying, 89

Datenmonitor
see Data View, 51

datetime
date, 121

debug
print, 122
resume, 123

summarize, 123
suspend, 124
timeprompt, 124

Displays
see Views, 44

event
dir, 124
isbreak, 125
level, 125
time, 125

Event View, 65
export selection, 72
select lines, 71
Short commands, 75
switch columns on/off, 66

Firmware
Loading, 27

Framing
display, 51
search, 60, 68

Ledtester, 49
show level notation, 50

LevelFinder, 65
linestates

changed, 126
count, 127

Measure time distances, 74
MultiProcess architectur, 43

Parity
display, 51
search, 60, 68

Program settings, 48
transferred, 48

Project
last opened, 37
load, 48
save, 36, 48

Projekt, 47
Protocol

autodection, 29
settings, 31

protocol
baudrate, 128
bitpause, 128
bytepause, 128
databits, 129

237

INDEX

parity, 129
Protocol Monitor

see Protocol View, 77
Protocol Templates

default templates, 80
define, 81
splitting into datagrams, 83

Protocol templates
language syntax, 83

Protocol View, 77
Font, 140
selection, 80
short keys, 141

Protocols, 80

Record
open, 37
pause, 29
save, 36
start, 29
starting automatically, 38
stop, 29

record
buswiring, 129
starttime, 130

Record mode, 33
continuous, 33
Fifo, 33

Region, 155
move in view, 156
remov, 156
rename, 156
select, 54, 72, 151
switch on/off, 156

ring buffer, 33

Scope display, 146
Session

laod, 37
see Project, 36

session, 47
shared

get, 130
set, 131

Signal level
displaying, 146
search duration, 71
search level state, 67
serach for changes, 70

Signal line

selection, 33
Signal name

rename, 32
Signal View, 145

color settings, 149
Cursor, 150
Display data values, 149
Raster on/off, 149
Selection, 150
short keys, 153
Signal inverting, 149
Signal sequence, 149
size distance, 150
undo zooming, 148
Zooming view, 148

Signalmonitor
see Signal View, 145

string
dump, 132

String searching, 57

Taskbar
Hide view entries, 35

Telegram
see Protocol, 80

telegram
data, 133
datatime, 134
dir, 134
dump, 134
duration, 135
isbreak, 135
number, 136
size, 136
string, 136
time, 137

telegrams
at, 138

Time base, 147
Time distance

between data bytes, 57
Time distances

search, 59
Transmission errors, 57

search, 60, 68
Transparency, 150

User request
unsaved data dialog, 35

Views, 44

238

INDEX

autoscroll, 44
copy, 46
locked, 44
save state, 46
synchronize, 43

239

	Analysis of RS422/485 Bus systems
	Special serial driver software
	Bus-tap 2-Wire Bus
	Double bus-tap 4-Wire bus
	Sampling

	MSB-RS485 Analyzer
	Advantages of a hardware solution
	Innovative software concept
	Application fields

	Features & Benefits
	Specifications
	Program Installation
	Installation under Linux
	Manual installation under Linux
	Installation for all users
	Program Updates

	Connection of the Analyzer
	Definition of the Signal lines
	Internal Signal Processing
	Digital In/Outputs
	Bus Termination and Tapping
	Tapping 2-wire system
	Segment Analysis 2-wire system
	Tapping 4-wire system
	Segment Analyse 4-wire system
	Signal assignment
	Lightment elements LEDs
	Green LEDs
	Red LEDs

	Program start
	User Interface
	Select kind of connection
	The first start
	Automatical protocol scan
	Manual Protocol setup
	Start/stop a recording

	Status display
	Display I
	Display II
	Display III

	Config a recording
	Connection
	Bus wiring
	Signals
	Record mode
	Autosave
	General

	The analysis tools
	Save a recording
	Save a session as a project
	Open an earlier recording
	Open an earlier session (project)
	Last opened recordings and projects
	Drag and drop
	Connecting multiple analysers
	Automatical start after computer boot
	Activate the autostart feature

	Short commands
	Additional program arguments
	Special program parameters

	The MultiView design
	Synchronization
	Follow (autoscroll)
	Locked (fixed)
	Linked

	Views (displays)
	Virtual Ledtester
	DataView - Data Monitor
	EventView - Event Monitor
	ProtocolView - Protocol Monitor
	SignalView - Signal Monitor
	Regions

	Copy Views
	Saving the state of the Views

	Session management
	Projects
	Store and reload projects
	Automatic storing of a session

	The virtual Ledtester
	The toolbar

	The Data View
	User Interface
	Data channel selection
	Synchronizing
	Addressing the window content

	Data selection
	Copy and Paste
	Save data selection
	Export a data selection

	Data displaying
	Columns and data format
	Coloring data
	Change the font

	The data inspector
	Searching the record
	Pattern search
	Search for time distances
	Search for transmission errors

	The Watch window
	The script editor
	Example scripts
	Limitations

	The toolbar
	Short commands

	The Event View
	User Interface
	Each line is one event
	All event types at a glance

	Navigation through the event list
	Event search with the LevelFinder
	Enter a search pattern
	Formulate a level condition
	Formulate a data error
	Formulate a data value
	Search input and search
	Search for signal changes
	Searching with time specification

	Mark a selection
	Save a selection as a region
	Export a selection as CSV file

	Measure time distances
	The toolbar
	Short commands

	The Protocol View
	User Interface
	Protocol Display
	Synchronizing the display
	Choosing a range

	Protocol Templates
	Define your own templates
	Modify an available template
	Template files and where you can find them
	The template file manager

	Template language syntax
	Splitting the data stream into telegrams
	Individual displaying of the datagrams

	Filtering
	Export Telegrams
	How the program determines the export fields
	The export dialog
	Export as CSV file
	Export as HTML
	Export as text
	Export as Latex
	Special notes about the caption labeling

	ProtocolView specific Lua extensions
	The base16 module
	Function bunpack
	The box module
	The checksum module
	The datetime module
	The debug module
	The event module
	The linestates module
	The protocol module
	The record module
	The shared module
	The string dump extension
	The telegram type
	The telegrams module

	Settings
	Show additional telegram information
	Change the font
	Set an individual background
	Lua compatibility

	The Toolbar
	Short commands
	Obsolete functions and modules
	Lua References

	The Signal View
	Signal representation
	Navigation
	Navigation by mouse wheel
	Shift with the hand cursor

	The time base
	Undo and Redo
	Settings dialog
	The signal dialog
	Signal inverting
	Signal sequence
	Fade in the transfered data
	Grafical effects

	Cursor operating
	Signal selection
	Regions

	Synchronizing
	The toolbar
	Short keys

	Regions
	Switch regions on/off
	Remove a region
	Rename a region
	Move regions into view

	A quick start with Lua
	Getting started
	Accessing the Data Monitor
	Mark sequences in the data grid

	Lua beginners guide
	Lua is case-sensitive
	Whitespaces and line ends
	Comments
	Types and values
	Numbers
	Booleans
	Strings
	nil
	Tables
	Functions

	Identifiers
	Keywords
	Variables
	Assignment
	Global and local variables

	Operators
	Arithmetic operators
	Conditional operators
	Logical operators
	String concatenation operator
	The length operator
	Precedence

	Control structures
	if then else
	while
	repeat
	Numeric for
	break

	Functions
	Function call
	Function definition

	Modules
	Standard Modules
	Analyzer Modules
	Bit Module
	Data View Module
	Record Module

	Analyzer specific data types
	Limitations
	Further information

	Synchronize two analyzers
	 Technical requirements
	Master Slave operation
	Establish a synchronous record
	Analyse a synchronous record
	Conclusion
	Synchronous recording
	Synchronous analysis

	Commandline API
	Combine the programs as a tool chain
	Data source
	Manipulators
	Data sink
	Some examples

	Record data with msb_record
	Connection settings and events
	Usage in your own application
	Remote control
	Synchronous recording with two or more analyzers
	Remote control a synchronous record
	msb_record program parameters

	Formatted output with msb_format
	Output of any character
	File output
	Format parameters
	User defined date and time
	msb_format program parameters

	Filtering data output with msb_filter
	Filter data
	Filter certain signal events
	Filter a given record part
	msb_filter program parameter

	Split records with msb_split
	Split existing record files
	Splitting the current recording from msb_record
	msb_split Program Parameter

	Trigger a record with msb_trigger
	Define a trigger condition
	Conditional start of a record with pre and post-trigger
	Conditional output of an existing record file
	Scan a record file for certain events
	One script for scan and trigger
	Provided Lua modules
	msb_trigger Program Parameter

	One config file for all

	ASCII character table
	Baudrate measuring
	Colors
	RGB short form
	RGB long form
	Predefined color names
	Grey colors
	Basic colors
	Extended colors

	Windows Trouble-Shooting
	Windows doesn't found the analyzer (Part I)
	Windows doesn't found the analyzer (Part II)
	MSB-RS485 Device quit working unexpectedly
	Other problem

	Linux Trouble-Shooting
	Linux doesn't found the analyzer (Part I)
	Linux doesn't found the analyzer (Part II)
	Linux doesn't found the analyzer (Part III)
	Recording doesn't work
	Segmentation fault during installation
	The help menu HelpContent F1 doesn't work
	The software doesn't run within a 64 bit Linux (Part I)
	The software doesn't run within a 64 bit Linux (Part II)
	Other problem

