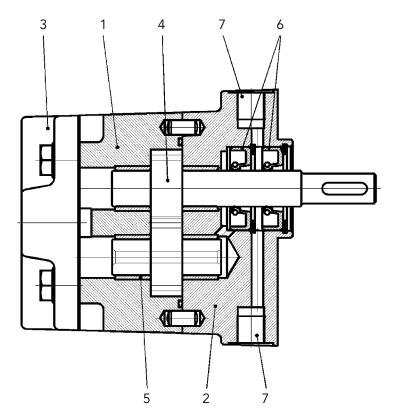

Zahnradpumpen KF 0 mit Magnetkupplung


Aufbau

Flanschpumpe mit Radialwellendichtring

- 1 Gehäuse
- 2 Flanschdeckel
- 3 Abschlussdeckel
- 4 Getriebe
- 5 Lagerbuchse
- 6 Radialwellendichtring

Flanschpumpe mit Doppelradialwellendichtring und Gewindeanschluss für Flüssigkeitsvorlage

- 1 Gehäuse
- 2 Flanschdeckel
- 3 Abschlussdeckel
- 4 Getriebe
- 5 Lagerbuchse
- 6 Doppelradialwellendichtring
- 7 Gewindeanschluss für Flüssigkeitsvorlage

Beschreibung

KF 0 - Eine Pumpe für die Prozesstechnik.

Bei zahlreichen verfahrenstechnischen Prozessen steht das Dosieren von Flüssigkeiten im Mittelpunkt der Aufgabenstellung. PUR-Komponenten, Weichmacher, Harze, Kleber, Lacke, Farben sind einige der wichtigsten Flüssigkeiten mit breitem Anwendungsspektrum.

Die Genauigkeit, Gleichmäßigkeit und Reproduzierbarkeit mit der diese Flüssigkeiten verarbeitet werden können, ist mitentscheidend für die Qualität des Endproduktes.

Besonders geeignet für diese Anwendungen ist die Zahnrad-Pumpe der Baugröße KF 0. Bei der KF 0 handelt es sich um eine Außenzahnradpumpe mit Fördervolumina von 0,5 cm³/U bis 4 cm³/U.

Die Abstufung der insgesamt 8 Nenngrößen erleichtert die Einstellung der gewünschten Dosierverhältnisse. Die feine Verzahnung mit hoher Zähnezahl gewährleistet einen pulsationsarmen Förderstrom. Alle Getriebeteile und die Lagerbuchsen sind bereits in der Standardausführung durch eine Spezialbeschichtung gegen Verschleiß und Korrosion geschützt, so dass auch gefüllte Medien bis zu einer bestimmten Korngröße und Härte der Füllstoffe gefördert werden können. Aufgrund der Spielauslegung in Verbindung mit einer präzisen Fertigung ergeben sich für die KF 0 sehr gute volumetrische Wirkungsgrade über einen weiten Druckbereich.

Verschiedene Dichtungsvarianten wie einfacher Radialwellendichtring und Doppelradialwellendichtring sind entsprechend der Aufgabenstellung wählbar, wobei die letztere Variante den Betrieb mit Flüssigkeitsvorlage (Quench) ermöglicht, um das Aushärten oder Kristallisieren des Fördermediums zu verhindern.

In Verbindung mit einem Durchflussmesser und der Auswerteelektronik kann die KF 0 zu einer hochgenauen Dosiereinheit erweitert werden.

Kenngrößen

Befestigungsart		Flansch
Leitungsanschluss		Rohrgewinde
Drehrichtung		rechts oder links
Einbaulage		beliebig (siehe Maßblätter)
Gewicht	kg	2,2

Betriebskenngrößen

Fördervolumen (cm³/U)	V_g	0,5 / 0,8 / 1,0 / 1,6 / 2,0 / 2,5 / 3,0 / 4,0
Betriebsdruck Saugseite	p _{e min}	-0,4 bar (-0,6 bar kurzfristig für Anfahrzustand) 2 bar
Betriebsdruck Druckseite	$p_{n\;min}$	120 bar (abhängig vom Medium, Viskosität und Fördervolumen)
Drehzahl	n	3000 1/min (viskositätsabhängig)
Viskosität	$ u_{min} $	$= 10 \text{ mm}^2/\text{s}$ = 20 000 \text{ mm}^2/\text{s}
Medientemperatur	$\vartheta_{\sf m \; max}$	= 90 °C NBR= 150 °C FKM= 200 °C PTFE (Radialwellendichtring)
Umgebungstemperatur	$artheta_{\sf u \; min}$ $artheta_{\sf u \; max}$	= -20°C = 60°C

Verfügbare Pumpenausführungen

Pumpen- typ	verfügbare Größen	Gehäuse- material	Lagerung	Lagermaterial	Getriebe	Wellen- abdichtung	bunt- metall frei
KF0//100	0,5 / 0,8 / 1,0 / 1,6 / 2,0 / 2,5 / 3,0 / 4,0	EN-GJL-250	Lager- buchse	Stahl ETG 100, chemisch vernickelt mit SiC- Einlagerungen	Stahl 1.7139 chemisch vernickelt mit SIC- Einlagerungen	Radialwellen- dichtring NBR, FKM, PTFE	ja
KF0//107	0,5 / 0,8 / 1,0 / 1,6 / 2,0 / 2,5 / 3,0 / 4,0	EN-GJL-250	Lager- buchse	Stahl ETG 100, chemisch vernickelt mit SiC- Einlagerungen	Stahl 1.7139 chemisch vernickelt mit SIC- Einlagerungen	Doppel- radialwellen- dichtring NBR, FKM, PTFE	ja
KF0//212	0,5 / 1,0 / 2,0 / 4,0	EN-GJS-600 nitrocarburiert; Flanschdeckel EN-GJS-600 tenifernitriert	Lager- buchse	Stahl ETG 100, chemisch vernickelt Werkzeugstahl, mit SiC- nitriert Einlagerungen		Doppel- radialwellen- dichtring FKM, FEP	ja

4

Technische Daten max. zul. Betriebsdruck in Abhängigkeit der Viskosität

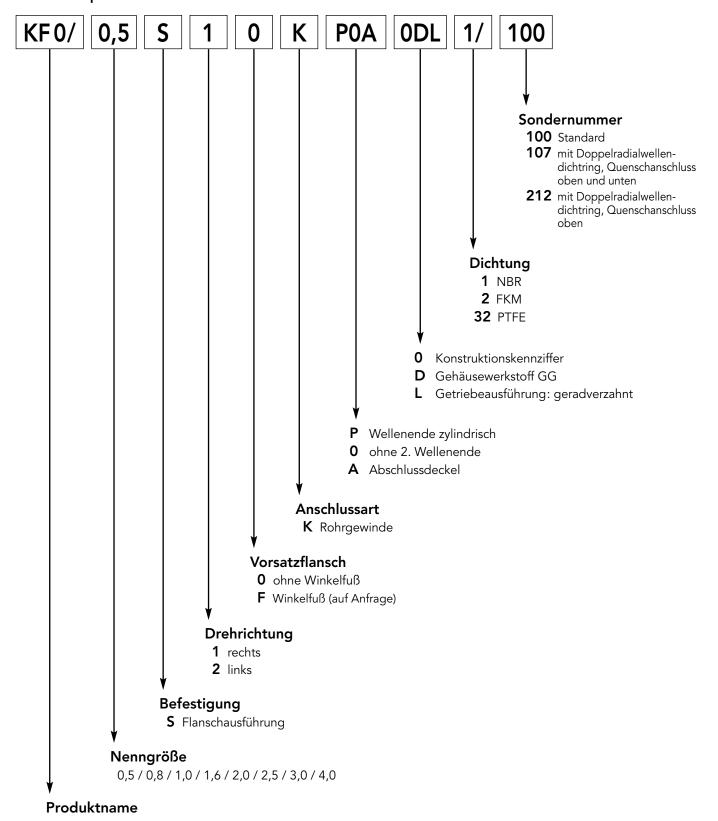
		zul. Betriebsdruck	in bar für Viskosität	
Nenngröße	10 mm ² /s	$30 \text{ mm}^2/\text{s}$	100 mm ² /s	$> 500 \text{ mm}^2/\text{s}$
0,5	10	30	50	60
0,8	15	40	60	70
1,0	15	40	60	70
1,6	20	60	80	100
2,0	20	60	80	100
2,5	30	60	100	120
3,0	30	60	100	120
4,0	40	80	120	120

Die Werte sind gültig für den Drehzahlbereich $n = 1000 \dots 3000 1/min$.

Für Drehzahlen < 1000 1/min sind die max. Betriebsdrücke zu reduzieren.

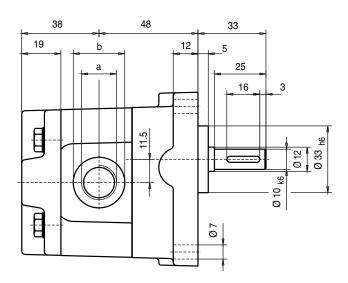
Förderstrom / Antriebsleistung

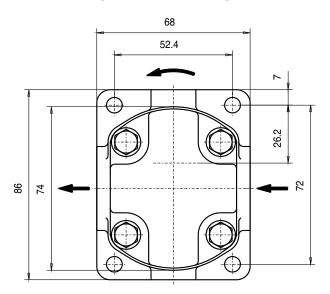
	Drehzahl n = 1450 1/min / Viskosität = 34 mm²/s																	
			D	ruck	p in b	ar			Nenn-			D	ruck _l	p in b	ar			
	5	10	20	40	60	80	100	120	größe	5	10	20	40	60	80	100	120	
	0,7	0,6	0,5	_	_	_	_	-	0,5	0,06	0,07	0,09	_	_	_	_	_	٧
l/min	1,1	1,1	1,0	0,8	_	-	_	_	0,8	0,06	0,08	0,11	0,17	_	_	_	_	ι KW
i.	1,4	1,3	1,3	1,1	_	_	_	_	1,0	0,07	0,08	0,12	0,19	_	_	_	_	P in
g	2,2	2,2	2,0	1,8	1,5	_	_	_	1,6	0,08	0,12	0,18	0,31	0,45	-	-	_	gun:
tron	2,8	2,7	2,6	2,3	2,0	-	_	_	2,0	0,09	0,13	0,20	0,35	0,50	_	_	_	leistung
Förderstrom	3,5	3,4	3,3	3,0	2,7	_	_	_	2,5	0,09	0,14	0,22	0,39	0,55	_	_	_	ntriebs
Förc	4,2	4,2	4,0	3,7	3,5	-	_	_	3,0	0,10	0,15	0,24	0,42	0,60	-	_	_	ıntri
	5,6	5,5	5,4	5,0	4,7	4,3	_	_	4,0	0,12	0,17	0,29	0,53	0,76	0,99	_	_	A


	Drehzahl n = 1450 1/min / Viskosität = 120 mm²/s																	
			D	ruck	p in b	ar			Nenn-			D	ruck _I	o in b	ar			
	5	10	20	40	60	80	100	120	größe	5	10	20	40	60	80	100	120	
	0,7	0,7	0,6	0,5	_	_	-	-	0,5	0,06	0,07	0,09	0,12	_	_	-	1	>
l/min	1,1	1,1	1,1	1,0	0,9	_	_	_	0,8	0,06	0,08	0,10	0,16	0,21	_	_	_	in KW
in /	1,4	1,4	1,4	1,3	1,2	_	_	_	1,0	0,08	0,09	0,12	0,17	0,23	_	_	_	ᇫ
g	2,3	2,2	2,2	2,1	2,0	1,8	_	_	1,6	0,08	0,11	0,16	0,27	0,38	0,50	_	-	gun:
tron	2,8	2,8	2,8	2,7	2,6	2,5	_	_	2,0	0,09	0,12	0,20	0,34	0,49	0,64	_	_	leist
Förderstrom	3,5	3,5	3,4	3,3	3,2	3,0	2,9	_	2,5	0,09	0,14	0,22	0,38	0,55	0,71	0,88	_	eps
Förd	4,2	4,2	4,2	4,1	3,9	3,8	3,7	_	3,0	0,10	0,15	0,24	0,43	0,61	0,80	0,98	_	Antriebsleistung
	5,7	5,6	5,6	5,5	5,3	5,2	5,0	4,9	4,0	0,12	0,17	0,29	0,53	0,76	0,99	1,23	1,46	4

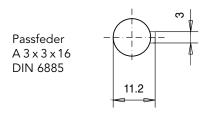
5

Typenschlüssel


Bestellbeispiel

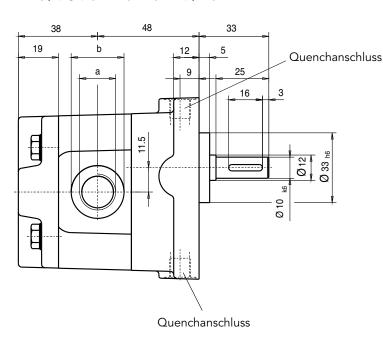


Abmessungen Sondernummer 100

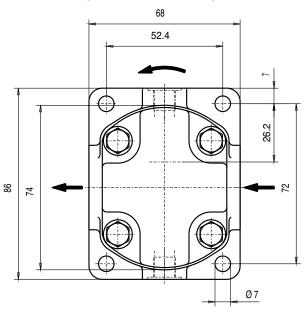

KF 0/.S.OK POA ODL./100

dargestellte Drehrichtung: rechts

Saug- und Druckanschluss sind maßlich gleich

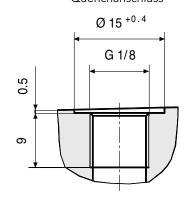


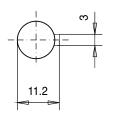
Vg cm ³ /U		Fördervolumen / Nenngröße										
cm ³ /U	0,5	0,5 0,8 1,0 1,6 2,0 2,5 3,0 4,0										
а	G ³	/8 – 13	tief	G ½ − 15 tief								
b		25				29						



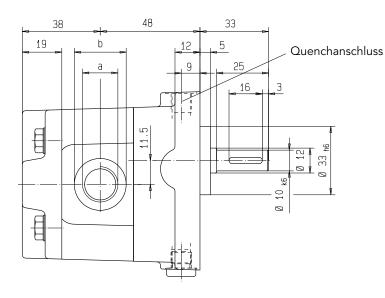
Abmessungen Sondernummer 107

KF0/.S.OK POA ODL./107

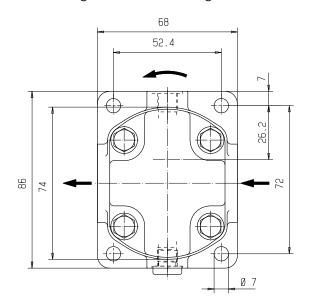

dargestellte Drehrichtung: rechts


Einbaulage: waagerecht

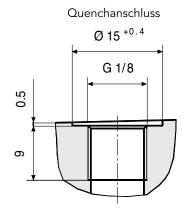
Saug- und Druckanschluss sind maßlich gleich

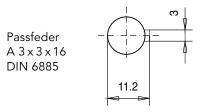


Vg		Fördervolumen / Nenngröße										
Vg cm ³ /U	0,5	0,5 0,8 1,0 1,6 2,0 2,5 3,0 4,0										
а	G ³	/8 – 13	tief	G ½ – 15 tief								
b		25				29						



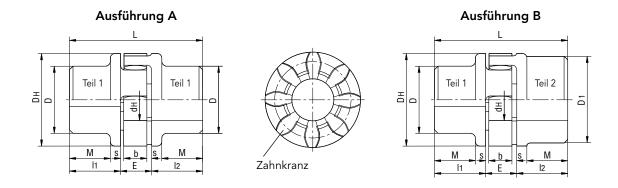
Abmessungen Sondernummer 212


KF 0/.S.OK POA ODL./212



dargestellte Drehrichtung: rechts

Saug- und Druckanschluss sind maßlich gleich



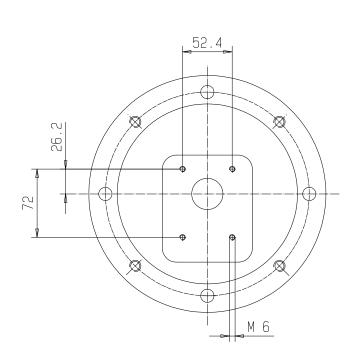
Vg	Fördervolumen / Nenngröße							
cm ³ /U	0,5	1,0	2,0	4,0				
а	G ³ / ₈ – 13	3 tief	G ½ – 15 tief					
b	25		2	29				

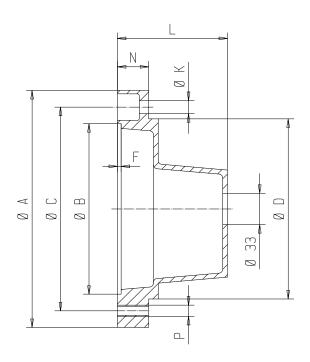
Zubehör Kupplungen

	Bestellbezeichnung	Kupplungs- größe		oen- off (AL)	Fertigbohrung							Abmessungen						
			Gewicht	Massentr.	m	min. max.												
			kg	kgm²	Teil	Teil	Teil	Teil										
					1	2	1	2	11/12	Е	S	b	L	М	DH	D	D ₁	dh
f. A	RA 14-Z 11/Z 11/	14	0,045	0,000006	6	_	16	_	11	13	1,5	10	35	-	30	30	_	10
Ausf.	RA 19-Z 25/Z 25/	19	0,117	0,000023	6	_	19	_	25	16	2	12	66	20	41	32	-	18
f. B	RA 19/24-Z 25/Z 25/	19/24	0,129	0,000033	6	19	19	24	25	16	2	12	66	20	41	32	41	18
Ausf.	RA 24/28-Z 30/Z 30/	24/28	0,29	0,00014	9	24	22	28	30	18	2	14	78	24	56	40	56	27

Typenschlüssel KF-Kupplung

RA 19 - Z 25/10 - Z 25/14 Kupplungsgröße Pumpenseitig zylindrisch Motorseitig zylindrisch


Kupplungsnabenlänge und Nabenbohrung


Betriebstemperatur: -20°C bis +80°C (kurzzeitige Temperaturspitzen bis 120°C sind zulässig) Gewichte und Massenträgheitsmomente beziehen sich auf max. Fertigbohrung ohne Nut. Fertigbohrungen nach ISO-Passung H7; Passfedernuten nach DIN 6885 Bl. 1

Zubehör Pumpenträger

KFO Pumpenträger aus Aluminium

Motor- bau- größe	Pumpenträger	Kupplung		Abmessungen								Gewicht
			Α	В	С	D	F	К	L	N	Р	kg
63	Z0/140/70	RA14-Z11/10-Z11/11	140	95	115	95	4	9	70	17	М8	0,36
71 S	Z0/160/80	RA19-Z25/10-Z25/14	160	110	130	110	4	9	80	13	M8	0,49
71	20/160/60	KA19-225/10-225/14	160	110	130	110	4	7	00	13	IVIO	0,49
80 S	Z0/200/90	RA19-Z25/10-Z25/19	200	130	165	145	5	11	90	16	M10	0,6
80	20/200/70	200/90 RA19-225/10-225/19	200	130	103	143)	11	70	10	IVITO	0,8
90 S	Z0/200/100	RA19/24-Z25/10-Z25/24	200	130	165	145	4	11	100	27	M10	1,345
90 L	20/200/100	KA19/24-225/10-225/24	200	130	163	143	4	' '	100	21	IVITO	1,345
100 LS												
100 L	Z0/250/116	RA24/28-Z30/10-Z30/28	250	180	215	190	4	14	116	33	M12	1,4
112 M												

Beschreibung

Bei verschiedenen Anwendungen stoßen konventionelle Dichtungen an ihre Grenzen. Typische Anwendungen sind in Polyurethananlagen, Kältemaschinen und Vaku-umanlagen zu finden. Für diese Anwendungen besteht die Möglichkeit die KF 0 mit einer Magnetkupplung auszurüsten.

Die Magnetkupplung dient als Wellendichtung und zur Übertragung des Drehmoments. Der Außenrotor der Magnetkupplung ist auf der Motorwelle und der Innenrotor direkt auf der Pumpenwelle angebracht.

Das Drehmoment wird durch die Magnetkräfte zwischen Außen- und Innenrotor übertragen. Zwischen den beiden Rotoren befindet sich der Spalttopf, der die Pumpe hermetisch abdichtet. Die Magnetkupplung wird eingesetzt, wenn absolute Dichtheit zwischen Pumpenraum und Atmosphäre gefordert ist, wie z. B. bei der Dosierung von Isocyanat, wo der Kontakt mit Luft zum ungewollten Aushärten des Mediums führen würde. Sie kann im Vakuumbetrieb – z.B. Abfüllen von Bremsflüssigkeit – eingesetzt werden, wodurch ein Eindringen von Luft ins System zuverlässig verhindert wird. Auch beim Betrieb in geschlossenen Systemen mit hohem Vordruck auf der Pumpensaugseite wird ein leckagefreier Betrieb sichergestellt.

Prädestiniert ist die Magnetkupplung beim Dosieren von gefährlichen und gesundheitsgefährdenden Medien.

Kenngrößen

Befestigungsart	Flansch
Leitungsanschluss	Rohrgewinde
Drehrichtung	rechts oder links
Einbaulage	beliebig

Betriebskenngrößen

Fördervolumen (cm³/U)	V _g	0,5 / 0,8 / 1,0 / 1,6 / 2,0 / 2,5 / 3,0 / 4,0
Betriebsdruck Saugseite	Betrieb P _{e min} P _{e max}	–0,4 bar, Vakuumanlage –0,92 bar 16 bar (SS1)
	Stillstan P _{e min} P _{e max}	d -1 bar 16 bar (SS1)
Betriebsdruck Druckseite	p _{n max}	25 bar (SS1)
Drehzahl	n	3000 1/min (viskositätsabhängig)
Viskosität	$ u_{min} $	= 10 mm ² /s $=$ 20 000 mm ² /s
Medientemperatur	$artheta_{min}$ $artheta_{max}$	= -10°C = 150°C FKM, Magnetwerkstoff SmCo
Umgebungstemperatur	ϑ _{u min} ϑ _{u max}	= -20 °C = 60 °C

Werkstoffe

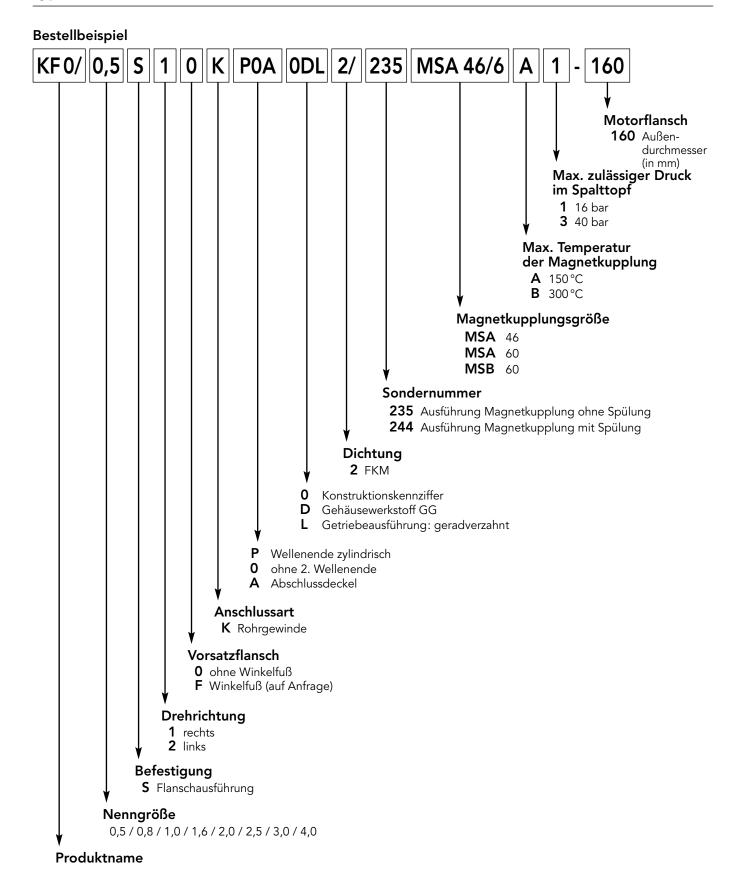
Pumpe	Pumpengehäuse Getriebe	GG 25, DIN 1691 Stahl 1.7139 chemisch vernickelt mit SiC-Einlagerungen
	Lagerbuchsen	Stahl ETG 100 chemisch vernickelt mit SiC-Einlagerungen
	Dichtungen	FKM
Magnetkupplung	Innenrotor	Edelstahl 1.4571
	Spalttopf	Edelstahl 1.4571
	Außenrotor	355J2F3 (St 52)
	Magnete	Sm2Co17

Nennmomente Magnetkupplung

MSA 46/6	3 Nm	
MSA 60/8	7 Nm	
MSB 60/8	14 Nm	

Auswahlhilfe

Pumpe	Kupplungs- größe	Zul. Leistung [kW] bei n = 750 1/min	Motor- baugröße	Zul. Leistung [kW] bei n = 1000 1/min	Motor- baugröße	Zul. Leistung [kW] bei n = 1500 1/min	Motor- baugröße	Zul. Leistung [kW] bei n = 3000 1/min	Motor- baugröße
KF 0	MSA 46	0,12	71	0,18	71	0,12	63	0,25	63
		-	-	ı	-	0,18	63	0,37	71
		-	-	ı	-	0,25	71	0,55	71
	MSA 60	0,18	80	0,25	71	0,37	71	0,75	80
		0,25	80	0,37	80	0,55	80	1,1	80
	MSB 60	0,37	90	0,55	80	0,75	80	1,5	90
		0,55	90	0,75	90	1,1	90	2,2	90


Die in der Tabelle angegebenen Werte beziehen sich auf eine maximale Medientemperatur von 80°C. Bei Medientemperaturen > 80°C sind gegebenenfalls stärkere Magnetkupplungen auszuwählen.

Zur Auslegung einer Magnetkupplung müssen folgende Angaben vorliegen:

- Pumpengröße
- Pumpendruck (Betriebs- und Anfahrdruck)
- Betriebs- und Anfahrviskosität
- Genaue Medienbezeichnung erforderliche statische Dichtungen (wenn möglich) evtl. wichtige Medieneigenschaften
- Leistung des Antriebsmotors
- Drehzahl bzw. Drehzahlbereich
- Einschaltart direkt oder mit Frequenzumrichter
- Medien- und Umgebungstemperatur

Typenschlüssel

Notizen

KRACHT GmbH \cdot Gewerbestraße 20 \cdot 58791 Werdohl, Germany Phone +49 2392 935 0 \cdot E-Mail info@kracht.eu \cdot Web www.kracht.eu