CHARACTERISTICS

Mini electric cylinder MCE is a mini linear drive with a piston rod. By using an integrated precision ball screw drive, the rotary motion (rotation) of the drive shaft is converted to the linear motion (translation) of the piston rod with high mechanical efficiency and low internal friction.

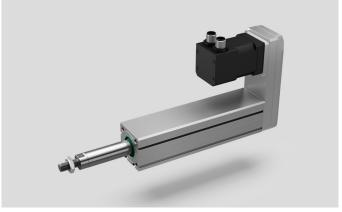
High-performance features such as high speed, good positioning accuracy, and high repeatability are ensured through a precision ball screw drive and an anti-rotating piston rod device.

A preassembled standard motor (in-line with a motor adapter and a coupling or in-parallel with a motor side drive and a timing belt) together with the standard drive, makes the system plug and play ready. Compact dimensions and optimally selected motor combinations cover a wide range of applications.

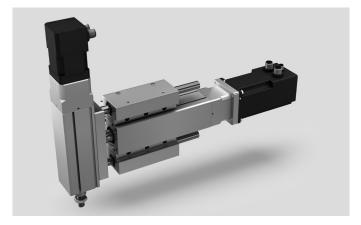
The aluminium cylinder profile includes T-slots on the bottom for fixing the electric cylinder, as well as side slots for clamping fixtures and magnetic field sensors.

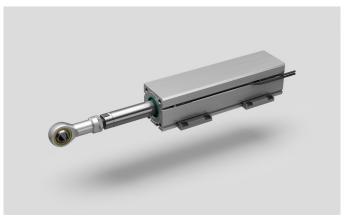
Options, such as female piston rod end and extended piston rod, together with a wide range of accessories make this product highly flexible. There is also an option of the mini electric cylinder without the preassembled motor if an individual motor is required.

For applications, where higher resistance to lateral loads or torsional moments is required, a guiding unit GUC can be used. By using the guiding unit, which offers high precision guiding and positioning, the mini electric cylinders can easily be combined to the multi-axis systems.

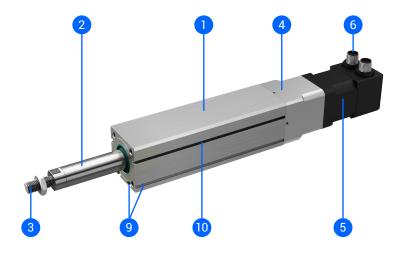

Excellent price-performance ratio and a quick delivery time, due to standard lengths, are ensured.

Each MCE is optimally pre-lubricated and ready for a maintenance-free operating process. MCE allows relatively high load capacities and optimal cycles for moving the larger payloads at high speeds in both horizontal and vertical directions.

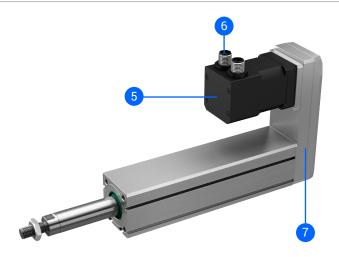

1 The aluminium profiles are manufactured according to the medium EN 12020-2 standard


Motor adapter VK with a coupling and a motor

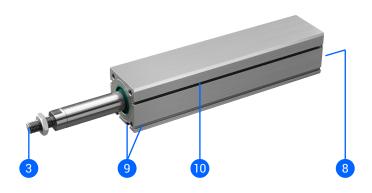
Motor side drive with timing a belt and a motor


Multi-axis system (guiding unit GUC is used)

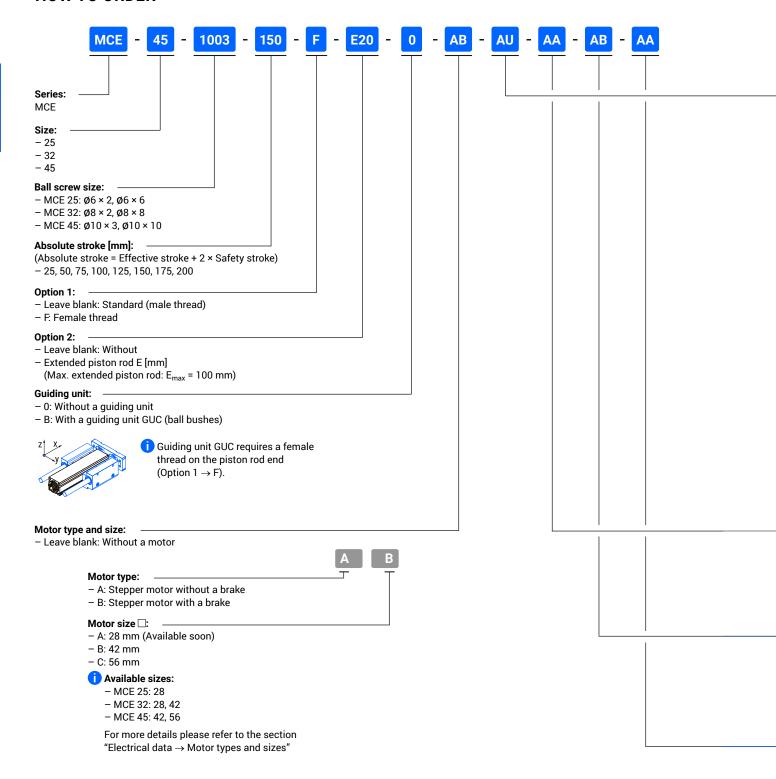
Accessories, MCE without a preassembled motor

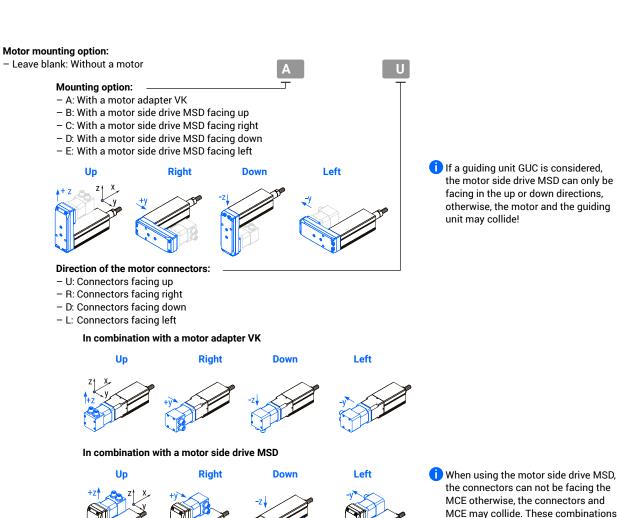

STRUCTURAL DESIGN

Combination with a standard motor and a motor adapter VK

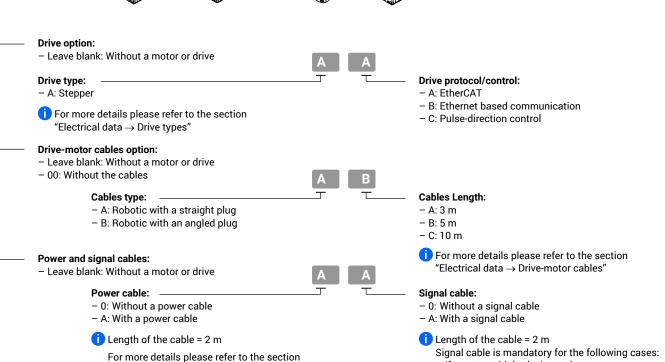


- 1 Compact aluminium cylinder profile
- 2 Piston rod (stainless steel) with an anti-rotation device
- 3 Piston rod end (optionally a female thread is available)
- 4 Motor adapter VK with a coupling
- 5 Preassembled motor (with/without brake)
- 6 Standard connectors (motor, encoder and brake optionally)
- 7 Motor side drive with a timing belt
- 8 Drive shaft of a precision ball screw drive
- 9 Slots for mounting
- 10 Slots for the magnetic field sensors (size 32 and 45) or mounting the sensor holder (size 25)


Combination with a standard motor and a motor side drive MSD


Without a motor

HOW TO ORDER



10

i When using the motor side drive MSD, the connectors can not be facing the MCE otherwise, the connectors and

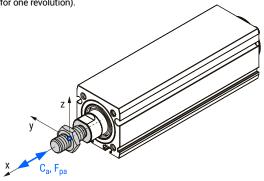
are: BD, CL, DU and ER.

- If a motor with brake is used

- If the limit switches are used

- If a pulse-direction drive control is used

For more details please refer to the section "Electrical data → Power and signal cables"


"Electrical data \rightarrow Power and signal cables"

TECHNICAL DATA

General technical data

MCE	Ball screw⁴	Dynamic axial load capacity ¹	Axial backlash (BS) ²	Max. angle of piston rod rotation ³	Max. repeatability⁵	Absolute stroke		
	d × l [mm]	C _a [N]	[mm]	[°]	[mm]	[mm]		
25	6 × 2	1900	≤ 0,05	≤ ±1	±0,015	25, 50, 75, 100, 125, 150, 175, 200		
23	6 × 6	1700	≥ 0,03	211	10,013	23, 30, 73, 100, 123, 130, 173, 200		
32	8 × 2	2000	≤ 0,06	≤ ±1	±0,015	25, 50, 75, 100, 125, 150, 175, 200		
32	8 × 8	1500	≤ 0,00	211	±0,015	25, 50, 75, 100, 125, 150, 175, 200		
45	10 × 3	3500	≤ 0,06	≤ ±1	±0,015	25 50 75 100 125 150 175 200		
45	10 × 10	3200	≥ 0,06	≥II	±0,015	25, 50, 75, 100, 125, 150, 175, 200		

¹ Dynamic axial load capacity of the ball screw drive. This value is the basis for calculating the service life.

Drive data

Combination with a standard motor and a motor adapter VK

MCE+	Ball			Max.	Max. permissib	le payload ¹	Max. travel	Max. rotational	Max.										
motor and VK	screw		Motor	permissible axial load ^{1, 2}	Horizontal ^{2, 3}	Vertical ²	speed ²	speed	acceleration										
and VK	d × I [mm]	Туре	Size ☐ [mm]	nm] F _{pa} [N] m _{pł}		m _{pv} [kg]	v _{max} [m/s]	n _{max} [rev/min]	a _{max} [m/s²]										
25	6 × 2		28	170	57	14	0,100	3000	20										
23	6 × 6		20	90	13	7,4	0,300	3000	20										
	8 × 2		28	215	72	18	0,094	2810											
32	0 ^ 2		42	375	126	31	0,100		20										
32	8 × 8	Ctonnor	28	50	6,6	4,0	0,400	3000											
	0 ^ 0	Stepper	42	200	35	17	0,400												
	10×3												42	465	156	39	0,150	3000	
45	10 × 3		56	695	233	58	0,150	3000	20										
45	10×10		42	135	21	11	0,492	2950	20										
	10 × 10		56	580	133	49	0,500	3000											

² Valid for ball screw drive in new condition.

³ Regarding to anti-rotation piston rod device in new condition.

⁴ d = ball screw nominal diameter, I = ball screw lead (for one revolution).

⁵ Valid for one-directional axial load.

 ¹ This value depends on the selected motor, travel speed and acceleration of the piston rod (see the following diagrams).
 ² Valid for the entire stroke range. Guiding unit GUC is not taken into consideration.
 ³ Valid for the payload supported by an external guiding (coefficient of friction 0,1 is taken into consideration).
 Maximum unsupported payload (lateral load) is presented on the following diagrams.

Combination with a standard motor and a motor side drive MSD

MCE+	Ball			Max.	Max. permissi	ble payload1	Max. travel	Max.	Max.																		
motor and MSD	screw		Motor	permissible axial load ^{1, 2}	Horizontal ^{2, 3}	Vertical ²	speed ²	rotational speed	acceleration																		
allu ivisu	d × l [mm]	Туре	Size ☐ [mm]	F _{pa} [N]	m _{ph} [kg]	m _{pv} [kg]	v _{max} [m/s]	n _{max} [rev/min]	a _{max} [m/s²]																		
25	6 × 2		28	170	57	14	0,100	3000	20																		
25	6 × 6		20	90	13	7,4	0,300	3000	20																		
	8 × 2		28	180	60	15	0,064	1920																			
32	0 ^ 2	Stepper	42 375 126 3	31	0,100	3000	20																				
32	8 × 8		Stepper	Stepper	Stepper	Stepper	Stepper	Stepper	Stepper	Stepper	Stepper	28	28 40 6,8 3,1		0,208	1560	20										
	0 ^ 0											Stepper	Stepper	Stepper	Stepper	Stepper	Stepper	Stepper	Stepper	Stepper	Stepper	Stepper	Stepper	Stepper	Stepper	Stepper	Stepper
	10 × 3	10 2		400	134	33	0,148	2960																			
45	10 ^ 3		56 695 233 58 0		0,150	3000	20																				
45 10 × 10	10 × 10		42	120	20	10	0,477	2860	20																		
	10 × 10		56	450	133	38	0,500	3000																			

Without a motor

	Ball	Max.	Max. permissi	ible payload	Max. drive	No load	Max. permissible		Max.	Max.	
MCE without	screw	permissible axial load ²	Horizontal ^{2, 3}			torque	radial load on shaft	travel speed ²	rotational speed	acceleration	
a motor	d × l [mm]	F _{pa} [N]	m _{ph} [kg]	m _{pv} [kg]	M _p [Nm]	M ₀ [Nm]	F _{pr} [N]	v _{max} [m/s]	n _{max} [rev/min]	a _{max} [m/s²]	
25	6 × 2	170	57	14	0,06	0,02	25	0,150	4500	20	
25	6 × 6	90	30	7	0,10	0,02	25	0,450	4500	20	
32	8 × 2	375	126	31	0,13	0,04	50	0,150	4500	20	
32	8 × 8	375	126	31	0,53	0,05		0,600	4500	20	
45	10 × 3	695	233	58	0,37	0,07	100	0,225	4500	20	
45	10 × 10	695	233	58	1,23	0,09	100	0,750	4500	20	

¹ This value depends on the selected motor, travel speed and acceleration of the piston rod (see the following diagrams).

Operating conditions

Ambient temperature	0 °C ~ +50 °C
Ambient temperature without a motor	0 °C ~ +60 °C
Protection class	IP40
Duty cycle	100 %
Maintenance	Life-time pre-lubricated

i Recommended values of loads:

All the data of the dynamic load capacities (ball screw drive) stated in the tables above are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety and service life.

We recommend a minimum dynamic safety factor of 5,0 or more. Please refer to page 95, where calculation of the safety factor of the ball screw drive and how the applied load affects the service life are presented.

² Valid for the entire stroke range. Guiding unit GUC is not taken into consideration.

³ Valid for the payload supported by an external guiding (coefficient of friction 0,1 is taken into consideration).

Maximum unsupported payload (lateral load) is presented on the following diagrams.

Mass and mass moment of inertia

MCE	Ball screw	Moved mass*	Mass of the mini electric cylinder**	Mass moment of inertia				
without a motor	d×I [mm]	m _{m, MCE} [kg]	m _{MCE} [kg]	J _{MCE} [10 ⁻² kg cm ²]				
25	6 × 2	0,06 + 0,0004 × Abs. stroke	0,15 + 0,0013 × Abs. stroke +	0,28 + 0,0007 × Abs. stroke + 0,00004 × E + 0,1013 × m _{load}				
25	6 × 6	+ 0,0004 × E	0,0004 × E	0,33 + 0,0011 × Abs. stroke + 0,00036 × E + 0,9119 × m _{load}				
32	8 × 2	0,12 + 0,0005 × Abs. stroke	0,31 + 0,0023 × Abs. stroke +	0,70 + 0,0025 × Abs. stroke + 0,00005 × E + 0,1013 × m _{load}				
32	8 × 8	+ 0,0005 × E	0,0005 × E	0,88 + 0,0033 × Abs. stroke + 0,00077 × E + 1,6211 × m _{load}				
ΛE	10 × 3	0,20 + 0,0010 × Abs. stroke	0,67 + 0,0043 × Abs. stroke +	2,77 + 0,0057 × Abs. stroke + 0,00022 × E + 0,2280 × m _{load}				
45	10 × 10	+ 0,0010 × E	0,0010 × E	3,23 + 0,0081 × Abs. stroke + 0,00249 × E + 2,5330 × m _{loac}				

 $[\]star$ The moved mass is already considered in the equation for calculating the mass of the mini electric cylinder m_{MCE} and the mass moment of inertia J_{MCE} . The moved mass

 \bigcirc Mass and moved mass of the guiding unit GUC are not included in the moved mass $m_{m,MCE}$, in the mass m_{MCE} and in the mass moment of inertia J_{MCE} . Please refer to the Guiding unit section for more information.

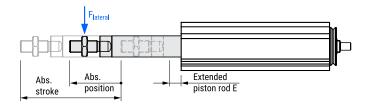
Abs. stroke	Absolute stroke	[mm]
Е	Extended piston rod	[mm]
m _{load}	Applied mass to be moved	[kg]

Additional mass of an electric cylinder when combining the motor with the motor adapter VK or the motor side drive MSD

			Motor with	out a brake	Motor with a brake					
МСЕ	ı	Motor	Mass of the motor and motor adapter VK	Mass of the motor and motor side drive MSD	Mass of the motor and motor adapter VK	Mass of the motor and motor side drive MSD				
	Туре	Size ☐ [mm]	m _{VK+m} [kg]	m _{MSD + m} [kg]						
25		28		Availab	le soon					
32		28		Availab	ne soon					
32	Stepper	42	0,52	0,62	0,65	0,75				
45		42	0,57	0,71	0,70	0,84				
45		56	1,31	1,49	1,50	1,68				

Planar moment of inertia

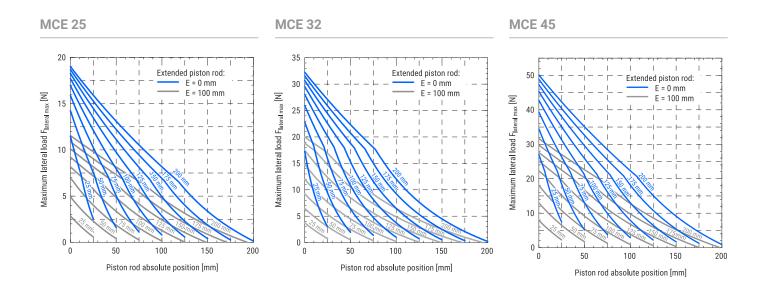
МСЕ	Cylinder profile									
MCE	l _y [cm⁴]	I _z [cm⁴]								
25	2,10	1,98								
32	6,42	6,58								
45	25,37	25,16								


Holding torque of a motor brake

	Motor	Holding torque (brake)
Туре	Size ☐ [mm]	[Nm]
	28	Available soon
Stepper	42	0,4
	56	1,0

includes the mass of the piston rod with the internal anti-rotation device and ball nut.

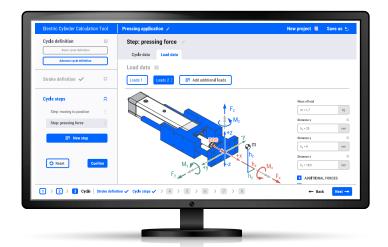
** For combination with standard motor and motor adapter VK or motor side drive MSD this mass m_{MCE} should be increased by m_{VK+m} or m_{MSD+m} respectively, see the table helow


Maximum lateral loading as a function of the piston rod absolute position

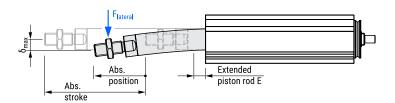
On the following diagrams, the maximum lateral loads acting on the piston rod end as a function of the piston rod absolute position for different values of the absolute stroke are presented. There is also an extended piston rod (E) taken into consideration.

Values on the curves represent an absolute stroke of the cylinder.

Diagrams consider the maximum travel speed of the particular size of the cylinder. When operating with lower travel speeds, the maximum lateral load may be higher.

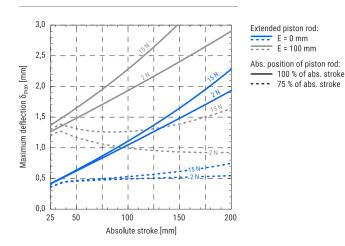


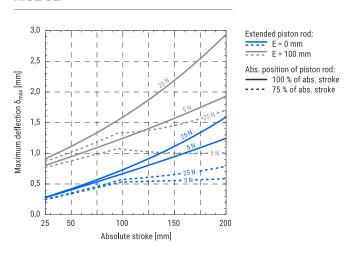
UNIMOTION


CALCULATE AND CONFIGURE YOUR OWN SOLUTION

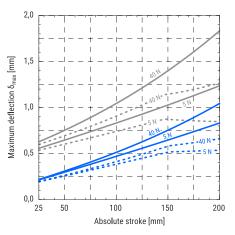
The ELECTRIC CYLINDER CALCULATION TOOL is an online application that enables quick and easy selection of a suitable product, with the possibility of achieving the optimal ratio between the given capacity and price, including 3D CAD models.

For more information please contact us or visit our website.


Maximum deflection of the piston rod end as a function of the cylinder absolute stroke


i On the following diagrams, the maximum deflections of the piston rod end subjected to different lateral loads for different absolute positions (defined as a portion of the absolute stroke) are presented. There is also an extended piston rod (E) taken into consideration.

Values on the curves represent lateral load applied to the piston rod end.

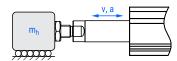

MCE 25

MCE 32

MCE 45

Extended piston rod:

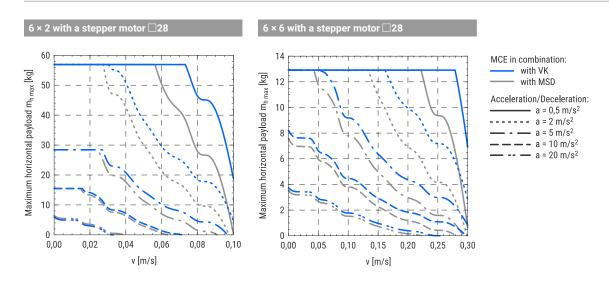
E = 0 mm

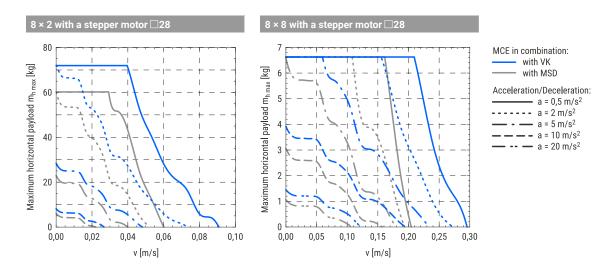

E = 100 mm

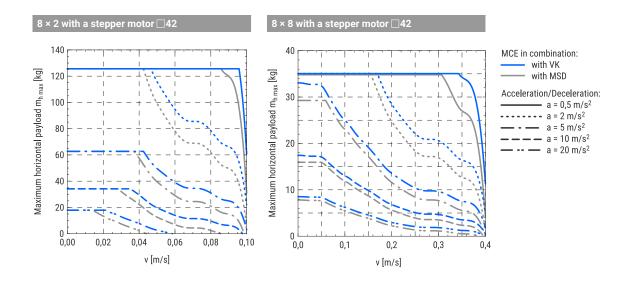
Abs. position of piston rod:

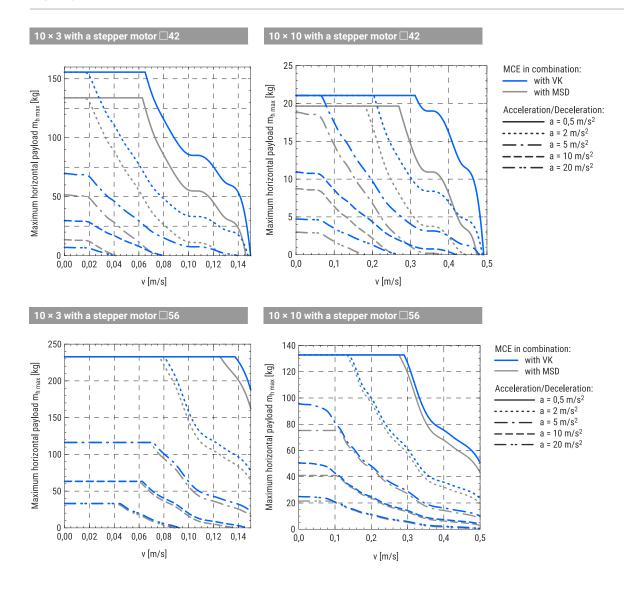
100 % of abs. stroke

75 % of abs. stroke

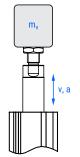

Maximum horizontal payload as a function of the travel speed and acceleration of the piston rod

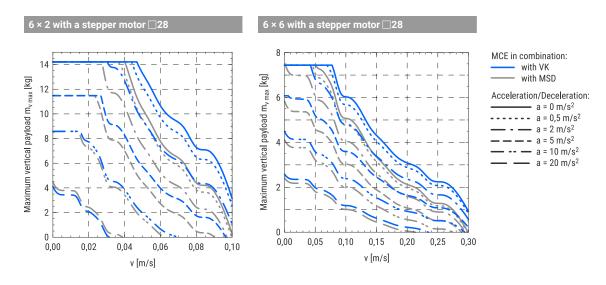


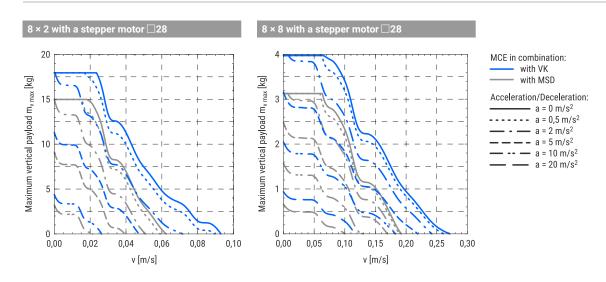

i On the following diagrams, the maximum horizontal payloads applied to the piston rod as a function of the travel speed for different accelerations, different ball screw leads and different combinations of the standard motors are presented. Motor adapter VK and a motor side drive MSD are also considered. Diagrams are valid when the payload is supported by an external guiding (coefficient of friction 0,1 has been considered).

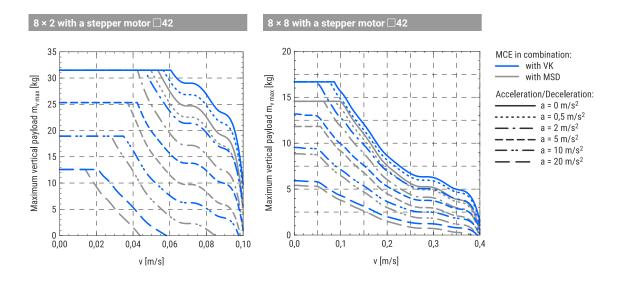

It should be noted that the diagrams are also valid for the case where a guiding unit GUC is considered.

MCE 25

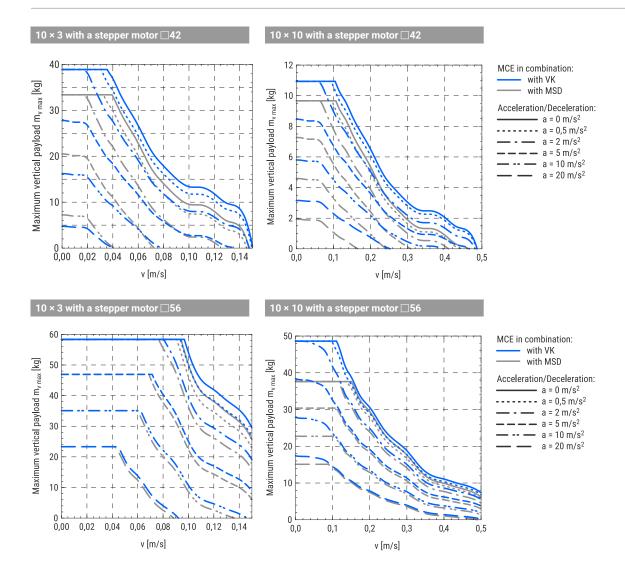


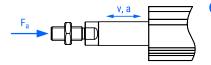

Maximum vertical payload as a function of the travel speed and acceleration of the piston rod



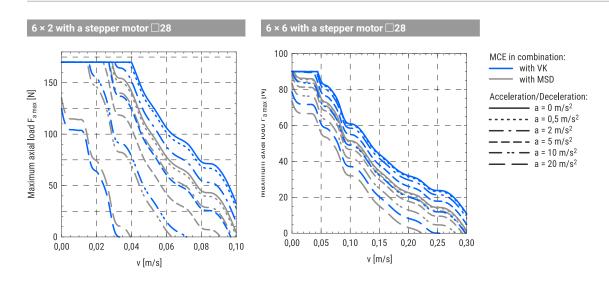

i On the following diagrams, the maximum vertical payloads applied to the piston rod as a function of the travel speed for different accelerations, different ball screw leads and different combinations of the standard motors are presented. Motor adapter VK and a motor side drive MSD are also considered.

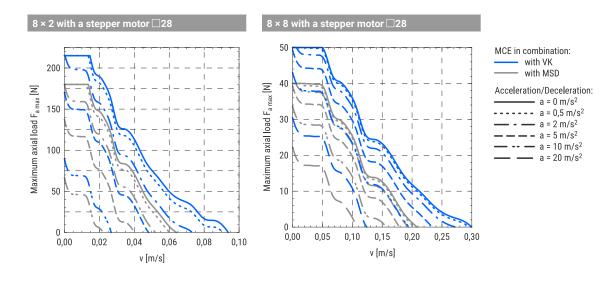
For the case that guiding unit GUC is taken into consideration, the value obtained from the diagram should be decreased by the moving mass of the guiding unit (please refer to the Guiding unit section).

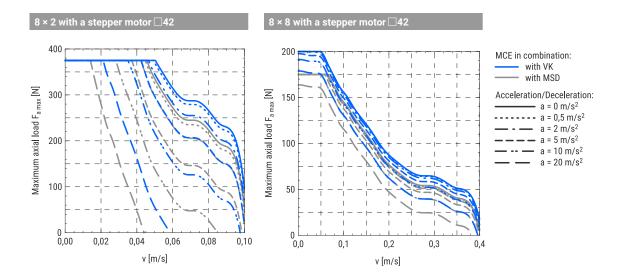

MCE 25



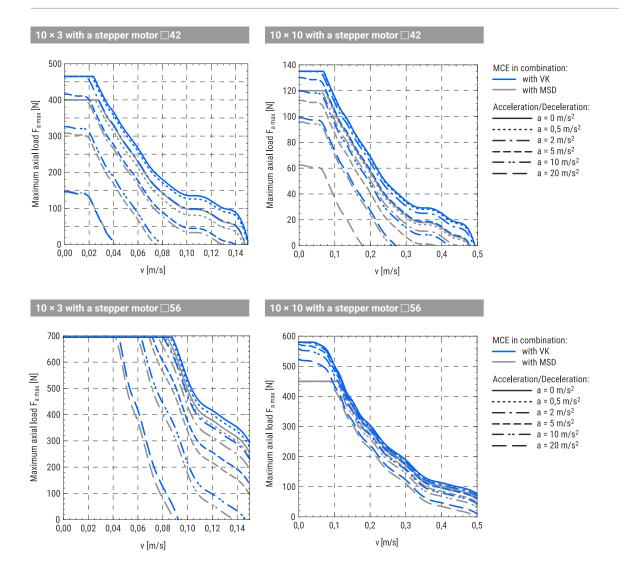
MCE 45


Maximum axial load as a function of the travel speed and acceleration of the piston rod




1 On the following diagrams, the maximum axial load applied to the piston rod as a function of the travel speed for different accelerations, different ball screw leads and different combinations of the standard motors is presented. Motor adapter VK and a motor side drive MSD are also considered.

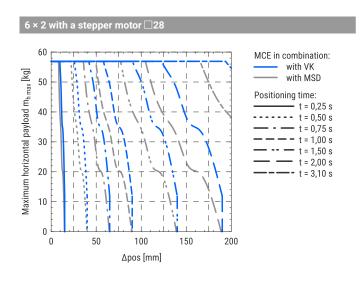
For the case where a guiding unit GUC is used, the value obtained from the diagram should be decreased by the moving mass of the guiding unit (please refer to the Guiding unit section) multiplied by the acceleration of the piston rod.

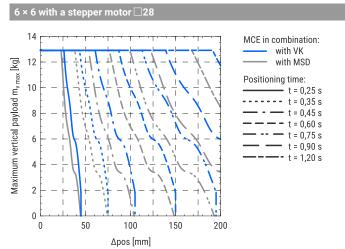

MCE 25

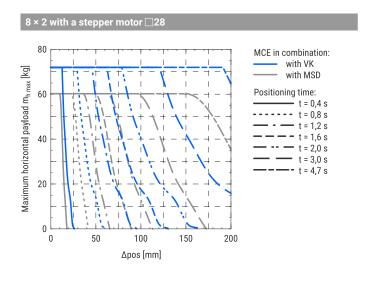
MCE 45

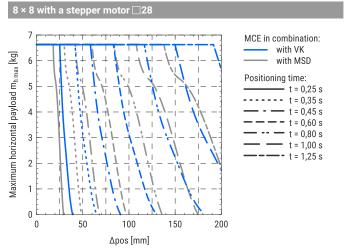
22

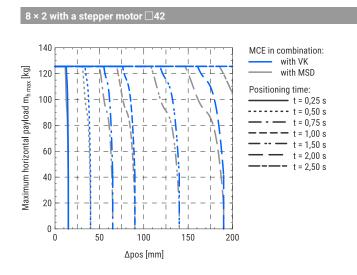
Maximum horizontal payload as a function of change of the position and positioning time of the piston rod

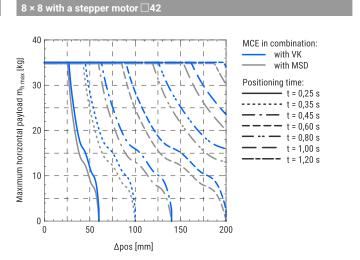

i The following diagrams show the maximum payload that can be moved by a certain horizontal distance within a positioning time frame. Acceleration/deceleration time of 100 ms is taken into account.

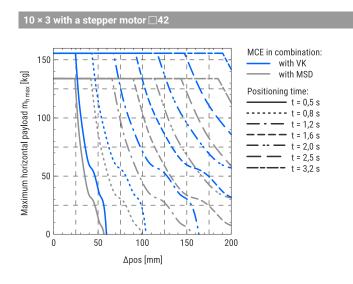

Diagrams depend on the ball screw leads and different combinations of the standard motors. Motor adapter VK and a motor side drive MSD are also considered.

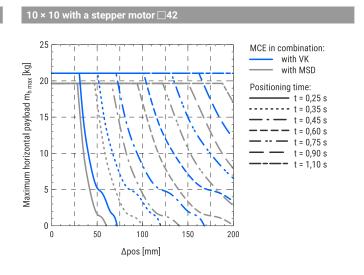

Diagrams are valid when the payload is supported by an external guiding (coefficient of friction 0,1 has been considered).

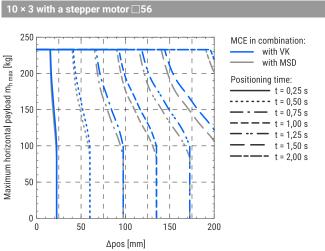

It should be noted that the diagrams are also valid for the case where a guiding unit GUC is considered.

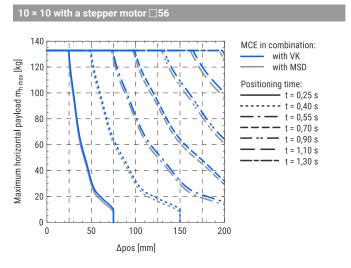

MCE 25

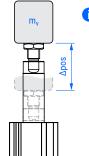




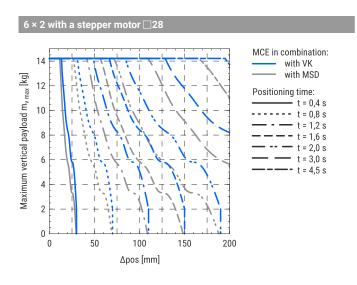


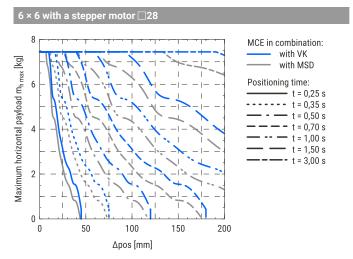


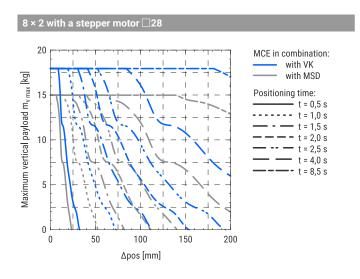


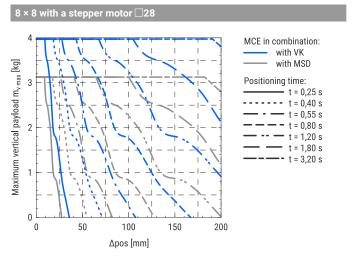


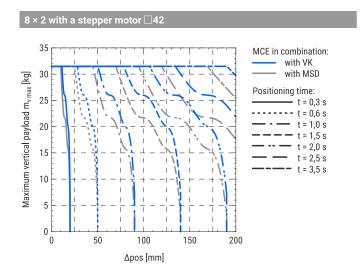
Maximum vertical payload as a function of change of the position and positioning time of the piston rod

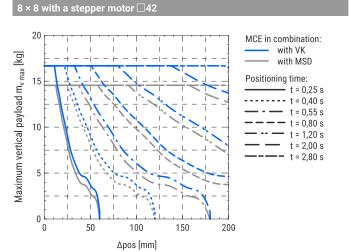


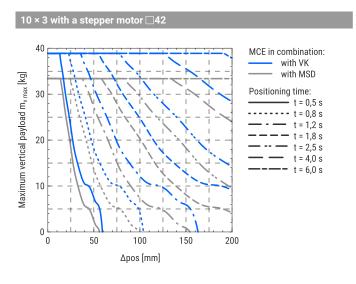

1 The following diagrams show the maximum payload that can be moved by a certain vertical distance within a positioning time frame. Acceleration/deceleration time of 100 ms is taken into account.

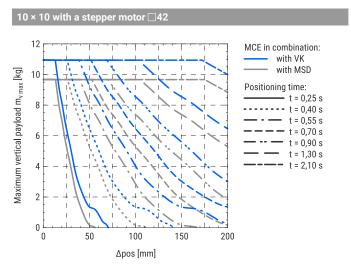

Diagrams depend on the ball screw leads and different combinations of the standard motors. Motor adapter VK and a motor side drive MSD are also considered.

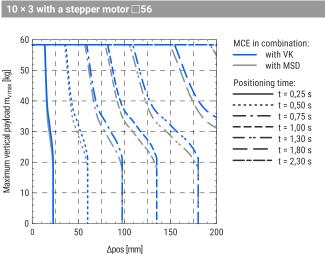

For the case where a guiding unit GUC is used, the value obtained from the diagram should be decreased by the moving mass of the guiding unit (please refer to the Guiding unit section).

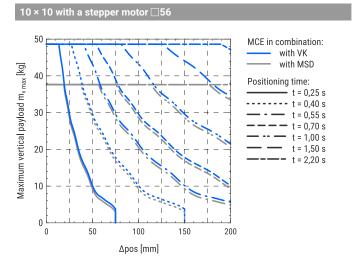

MCE 25

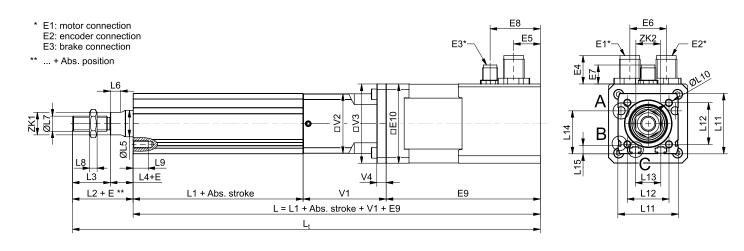


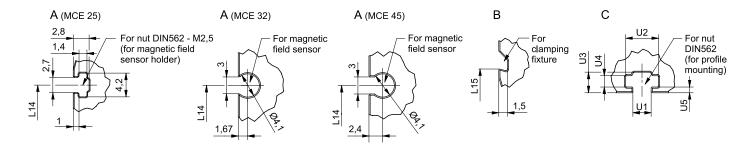






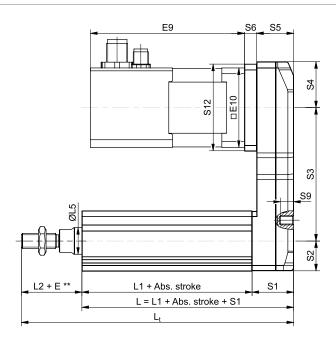


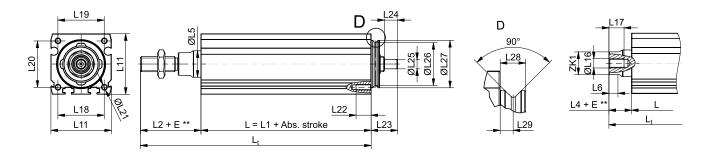




DIMENSIONS

i All dimensions are in mm. The scale of the drawings may not be equal.


MCE in combination with a standard motor and a motor adapter VK


MCE in combination with a standard motor and a motor side drive MSD

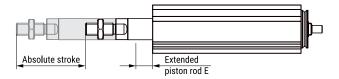
MCE without a motor

Female thread

MCE dimensions

MCE	L1	L2	L3	L4	ØL5	L6	ØL7	L	.8 L	_9 ØL10	L11	L12	L13	L14	L15	ØL16	L17	L18	L19	L20	ØL21	L22	L23	L24	Ø L25 (h7)	Ø L26	Ø L27 (h7)
														[m	m]												
25	50	26	16	10	12	3,5	M6 x 1	3	,2	8 M2,5	25	21	13,5	19,25	4,4	M4	8	19	17	18	M2,5	8	14	7	5	17,6	20
32	65	32	20	12	14	5,5	M8 x 1,2	25	4	8 M4	32	22	13,5	22,8	4,4	M5	8	24,5	24,5	24,5	М3	8	14	7	5	22,6	25
45	80	38	22	16	18	7	M10 x 1,	25	5 1	2 M6	45	32	20	30,5	4,4	М6	12	34	34	34	M4	10	16	8	8	31,6	34

MCE	L28	L29	ZK1	ZK2	U1	U2	U3	U4	U5
MICE					[mm]				
25	4,5	2,3	10	10	2,2	4,2	2,8	1,4	1
32	4,5	2,3	12	13	3,2	5,8	3,6	2	1
45	4,5	2,3	16	17	4,2	7,5	4,7	2,5	1,2


Motor adapter VK and a motor side drive MSD dimensions

MCE	Motor		V1	□V2	□V 3	V4	S 1	S2	S3 (±0,5)	S4	S5	S6	S 7	ØS8	S9	S10	S11	S12	S13	S14
	Туре	Size ☐ [mm]									[mr	1]								
25	-	28	36	24,5	28	5,5	22	12,5	52,5	18,25	19,5	5,5	18	M4	6	24,5	31,5	34	38,5	83,25
20		28	36	31,5	31,5	0	22	16,0	52,5	18,25	19,5	5,5	22	M5	7	31,5	31,5	34	0	86,75
32	Stepper	42	40	31,5	42	5,5	22	16,0	70,5	24,25	19,5	6,5	22	M5	7	31,5	44,5	46	48	110,75
45		42	42	44,5	44,5	0	27,5	22,5	81	24,75	24,5	6,5	32	M6	7	44,5	44,5	46	0	128,25
		56	46	44,5	56,4	9,5	27,5	22,5	88,5	33,25	24,5	6	32	M6	7	44,5	59,5	59,5	64,5	144,25

Motor dimensions

Motor			E1	E2	E3	E4 (±1)	E5 (±0,3)	E6	E7 (±1)	E8 (±0,3)	E9 (±1)	□E10				
Туре	Size ☐ [mm]	Brake	[mm]													
	28	_		A H. L.L.												
	28	with	Available soon													
Ctonnor	42	_	M12 5-pole	M12 8-pole	_	14	14	19,5	-	_	70,4	42,3				
Stepper	42	with	M12 5-pole	M12 8-pole	M8 3-pole	14	14	19,5	9	27	106,4	42,3				
	56	_	M12 5-pole	M12 8-pole	_	14	13,4	23	-	_	98	56,4				
	56	with	M12 5-pole	M12 8-pole	M8 3-pole	14	52,4	23	9	12	138	56,4				

Absolute stroke and length of the MCE definition

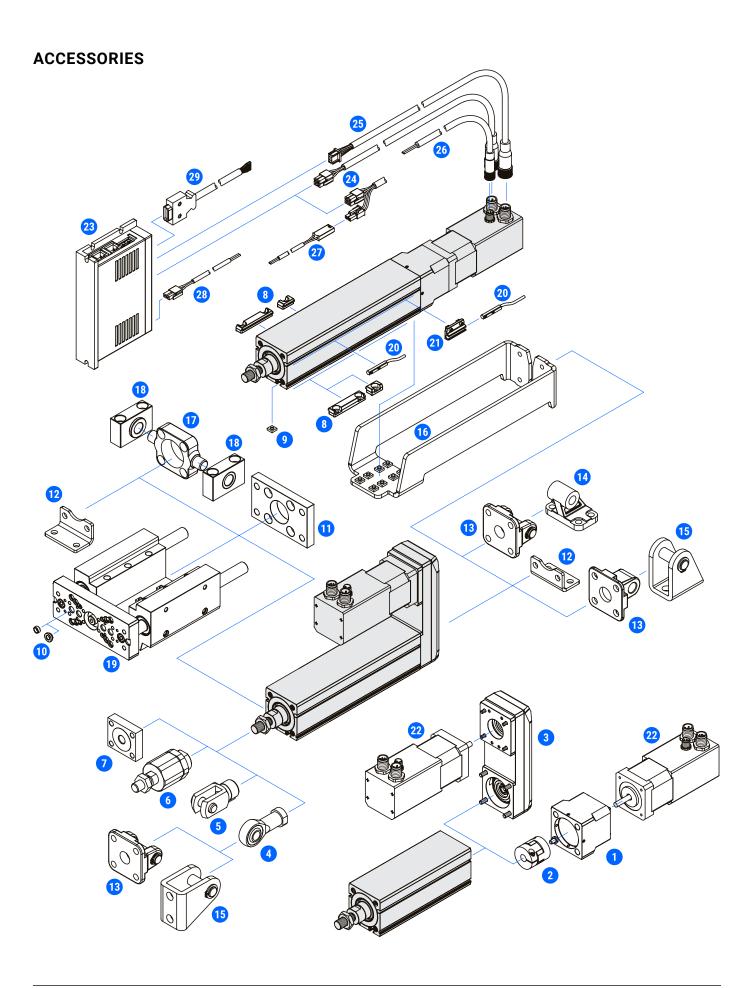
Absolute stroke definition

Absolute stroke = Effective stroke + 2 × Safety stroke

1 The electric cylinder MCE does not include any safety stroke.

Length definition

 $L_t = L + L2 + E + Abs.$ position


Female thread:

 $L_t = L + L4 + E + Abs.$ position

i Length L and L_t are defined as it is presented on the dimensional drawings above, where lengths of a motor, a motor adapter VK and a motor side drive MSD are also considered.

Abs. stroke	Absolute stroke	[mm]
Abs. position	Absolute position	[mm]
E	Extended piston rod	[mm]
L	Length	[mm]
L _t	Total length	[mm]

 $100 E_{max} = 100 mm.$

