#### Instruction Manual XENAX® Xvi 75V8

Translation of "Anleitung XENAX® Xvi 75V8"

#### Edition January 2016 **Compact Ethernet Servo Controller**





#### Parameterization over Web browser

The integrated webserver allows a setup and parameterization over web browser. After an automatic self-check, the connected LINAX® linear motor axis or ELAX® electric slide can instantly be set in motion by click on the Quick Start Button.

This XENAX® Xvi 75V8 is setting new standards in terms of intuitive handling.

#### General

The XENAX® Xvi 75V8 Ethernet servo controller controls all series of the LINAX® linear motor axes and the ELAX® electric slide product family. It is also possible to control servo motors series RAxx (ultracompact rotary axes) and RT-xx (round table with hollow shaft).

Customary rotary AC/DC/EC servo motors for example from FAULHABER® or MAXON® can also be operated by the XENAX® Xvi 75V8.

The logic supply (24V DC) and the intermediate circuit voltage (24V – 75V DC) are separately connectable. This is how "Safety Torque Off" is possible as a standard.

Master-Slave function, Force Calibration (compensation of the cogging forces in iron core linear motors) and optional "Safety" functionalities such as SS1, SS2, or SLS are further features of this compact XENAX® Xvi 75V8 servo controller.



#### **Contents**

| 1 Characteristics XENAX® Xvi 75V8                       | 7  |
|---------------------------------------------------------|----|
| 1.1 Electronics / Firmware                              | 7  |
| 1.2 Performance / Options                               | 7  |
| 1.3 Dimensions                                          | 8  |
| 2 Controllable Motor Types                              | 9  |
| 2.1 Linear Motor Axes and Electric Slides               | g  |
| 2.2 Servo Motors in our Product Line                    | g  |
| 2.3 Customary Servo Motors                              | 10 |
| 3 Hardware and Installation                             | 10 |
| 3.1 Environmental Conditions                            | 10 |
| 3.2 Assembly and Installation                           | 10 |
| 4 Functional Safety - TÜV certified                     | 11 |
| 4.1 Hardware Requirements                               | 11 |
| 4.2 Safety Standards                                    | 11 |
| 4.3 Basic Conditions                                    | 12 |
| 4.4 Technical Data Safety                               | 13 |
| 4.5 Safety Functions                                    | 14 |
| 4.5.1 STO, Safe Torque Off                              | 14 |
| 4.5.2 SS1, Safe Stop 1                                  | 14 |
| 4.5.3 SS2, Safe Stop 2                                  | 14 |
| 4.5.4 SLS, Safely Limited Speed                         | 15 |
| 4.6 Functional Safety Parameterization in WebMotion®    | 15 |
| 4.6.1 Display Active Safety Parameters                  | 15 |
| 4.6.2 Modification of Safety Parameters                 | 15 |
| 5 UL                                                    | 17 |
| 5.1 Ratings                                             | 17 |
| 6 Electrical Connections                                | 18 |
| 6.1 Plug Arrangement                                    | 18 |
| 6.2 Plug Pin Configuration                              | 18 |
| 6.2.1 RS232                                             | 18 |
| 6.2.2 Motor Plug 3 Phase                                | 19 |
| 6.2.3 Logic and Power Supply                            | 19 |
| 6.2.4 Encoder and Hall Signals                          | 20 |
| 6.2.5 Definition of Rotating Direction for Servo Motors | 20 |
| 6.2.6 OPTIO Pulse/Dir, Second Encoder Channel           | 21 |
| 6.2.7 PLC I/O                                           | 22 |
| 6.3 Internal I/O Circuit                                | 23 |
| 6.4 Output Configuration                                | 24 |
| 7 Configuration Motor Type Linear / Rotary              | 25 |
| 8 RS232 Serial Interface                                | 26 |
| 8.1 Baud Rate RS232 XENAX®                              | 26 |

| 9 ETHERNET TCP/IP Interface                                   | 26       |
|---------------------------------------------------------------|----------|
| 9.1 Baud Rate Ethernet Gateway (XPort)                        | 26       |
| 9.2 Default Setup Records Upgrade                             | 28       |
| 9.3 Test IP Connection with >IPCONFIG                         | 29       |
| 9.4 Test Connection with >PING                                | 29       |
| 9.5 Change IP Address with "Device Installer"                 | 29       |
| 9.6 Communication Settings XPort                              | 30       |
| 9.7 PORT Address                                              | 30       |
| 10 ASCII Protocol                                             | 31       |
| 10.1 ASCII Protocol TCP/IP                                    | 32       |
| 10.2 Asynchronous Messages (Events)                           | 32       |
| 11 Install JAVA Plugin                                        | 33       |
| 11.1 Applet Cache                                             | 34       |
| 11.2 Disable Java certificate Validation                      | 35       |
| 12 WebMotion®                                                 | 35       |
| 12.1 Start WebMotion®                                         | 36       |
| 12.1.1 Error "Upload XENAX Settings®"                         | 36       |
| 12.2 Quick Start only with LINAX® and ELAX® linear motor axis | 37       |
| 12.3 Operation, Status Line                                   | 38       |
| 12.4 Move Axis by Click                                       | 39       |
| 12.4.1 Move Axis by Click for LINAX®/ELAX® Linear Motors      | 39       |
| 12.4.2 Move Axis by Click for Rotary Motors                   | 41       |
| 12.5 Move Axis by Command Line                                | 41       |
| 12.6 ASCII Command Set for XENAX®                             | 42       |
| 12.6.1 Power / Reset                                          | 42       |
| 12.6.2 Basic Settings                                         | 42       |
| 12.6.3 Motor Settings                                         | 42       |
| 12.6.4 Controller Settings                                    | 43       |
| 12.6.5 Motion Settings                                        | 43       |
| 12.6.6 Reference LINAX® / ELAX®                               | 44       |
| 12.6.7 Reference Gantry                                       | 44       |
| 12.6.8 Reference Rotary Motors                                | 44       |
| 12.6.9 Move Commands                                          | 45       |
| 12.6.10 Index / Moves with I_Force (programmed movements)     | 45       |
| 12.6.11 Program / Application                                 | 46       |
| 12.6.12 Event                                                 | 46       |
| 12.6.13 Input / Output                                        | 46       |
| 12.6.14 Limit Position ELAX®  12.6.15 Force Control           | 47<br>48 |
| 12.6.16 Correction Table                                      | 48<br>50 |
| 12.6.17 System Information                                    | 50       |
| 12.6.18 Bus Module Information                                | 51       |
| 12.6.19 Error Handling                                        | 51       |
| <del>-</del>                                                  | 91       |

|    | 12.6.20 System Monitoring                        | 21 |
|----|--------------------------------------------------|----|
|    | 12.7 Move Axis by Force                          | 52 |
|    | 12.8 Move Axis Motion Diagram                    | 52 |
|    | 12.9 Index                                       | 54 |
|    | 12.10 Drive I_Force                              | 54 |
|    | 12.11 Sector I_Force                             | 55 |
|    | 12.12 Program                                    | 55 |
|    | 12.12.1 Program commands                         | 56 |
|    | 12.13 I/O Functions                              | 58 |
|    | 12.13.1 Selection of Input Functions             | 59 |
|    | 12.13.2 Selection Output Functions               | 60 |
|    | 12.14 Profile (Velocity)                         | 61 |
|    | 12.15 Captured Pos                               | 62 |
|    | 12.16 State Controller                           | 63 |
|    | 12.16.1 F Setting                                | 66 |
|    | 12.17 Motor                                      | 69 |
|    | 12.17.1 Motors LINAX® and ELAX®                  | 69 |
|    | 12.17.2 Motor Rotary Servo Motors                | 70 |
|    | 12.18 Reference                                  | 71 |
|    | 12.18.1 Reference LINAX®                         | 71 |
|    | 12.18.2 Reference ELAX®                          | 72 |
|    | 12.18.3 Reference Rotary Servo Motors            | 74 |
|    | 12.18.4 Correction Table for LINAX® / ELAX®      | 75 |
|    | 12.19 Basic Settings                             | 78 |
|    | 12.20 Version                                    | 78 |
|    | 12.21 Update Firmware / WebMotion®               | 79 |
|    | 12.22 Save                                       | 80 |
|    | 12.23 Open                                       | 80 |
| 13 | B Master / Slave                                 | 81 |
|    | 13.1 Master/Slave Configuration                  | 81 |
|    | 13.2 Programming example Pick&Place              | 82 |
|    | 13.3 Timing Master / Slave                       | 82 |
| 14 | I Gantry Synchronized Mode                       | 83 |
|    | 14.1 Activate Gantry Mode                        | 83 |
|    | 14.2 ASCII Commands for Gantry Synchronized Mode | 84 |
| 15 | 5 Force Processes                                | 85 |
|    | 15.1 Overview FORCE Functions                    | 85 |
|    | 15.1.1 Force Calibration                         | 85 |
|    | 15.1.2 Force Limitation                          | 86 |
|    | 15.1.3 Force Monitoring                          | 87 |
|    | 15.1.4 Force Control                             | 88 |
|    | 15.2 Integration of Force Processes              | 89 |
|    | 15.2.1 XENAX® in Program                         | 89 |

| 15.2.2 Over Command Set                               | 91  |
|-------------------------------------------------------|-----|
| 15.2.3 Sector Offset for Touching Position            | 93  |
| 15.3 Application Example                              | 94  |
| 15.3.1 Programming Force Process in XENAX®            | 95  |
| 15.3.2 Force Process with ASCII Commands              | 97  |
| 16 Operating Status on 7-Segment Display              | 99  |
| 17 Error Handling                                     | 99  |
| 17.1 Error Codes                                      | 99  |
| 17.2 Notes for Error 50                               | 102 |
| 17.3 Notes for Error 89                               | 103 |
| 17.4 Arbitrary Display on 7-Segment                   | 105 |
| 17.4.1 Defective adapter for logic supply             | 105 |
| 17.4.2 Defective Firmware                             | 105 |
| 17.4.3 GAL contact problems, only with hardware <=2.0 | 106 |



#### 1 Characteristics XENAX® Xvi 75V8

#### 1.1 Electronics / Firmware

**Description** Data

Interfaces Ethernet, TCP/IP, http web server

Puls/direction, Master Encoder, I/O IIC Master/Slave, Start-up Key

RS232

Bus, multi-axis operation EtherCAT (CoE), DS402

Ethernet POWERLINK, DS402

CANopen, DS 402 PROFINET (PROFIdrive) EtherNet/IP, DS402 Ethernet Switch, TCP/IP

Safe Motion Unit SMU Security module, 2-channel monitoring

TÜV certified

SIL 2 Safety Integrity Level 2

Cat 3 Category 3

PL d Performance Level d

**MTTFd** 1733313 h

Status indication 7-Segment LED

Input digital 12 x 24V Pull down

Output digital 8 x 24V, 100mA Source or 400mA Sink Input function 8 inputs to start a function or program

Output function 8 outputs to indicate a condition Reference for rotary motors free to define, incl. external sensor

Index 50 motion moves (accl. / speed / distance, position)

Profile 5 extended motion profiles with 7 profile segments each.

Number of application programs via input 15, Input 9-12 binary coded (MODE >=10)

Firmware update Over TCP/IP, Flash-memory internal

Application and parameter update Over TCP/IP, Flash-memory internal

#### 1.2 Performance / Options

"LG" logic supply 24VDC / max. 1.3 A

"PW" power supply motor 12-75VDC 3- Phase Output frequency 0-599 Hz

Nominal current 0-89

Peak current 18A

Continuous power / dissipation loss Typical 48V / 3A / 150W /  $\eta \approx 85\%$  / Pv = 22W

Temperature monitoring output stage Shutdown at 80°C

Excess voltage – observation > 85V Under voltage – observation < 10V

Ballast circuit up to 80W

Fuse power 10AF

Motor temperature observation with LINAX®/ELAX® Shutdown at 80°C

linear motor, sensor in coils

PLC Input 8 Inputs, 24V

PLC Input BCD 4 Inputs, 24V, binary coded for program selection

PLC Output 8 Outputs, 24V, Source 100mA, Sink 400mA, Source/Sink

**Options** 

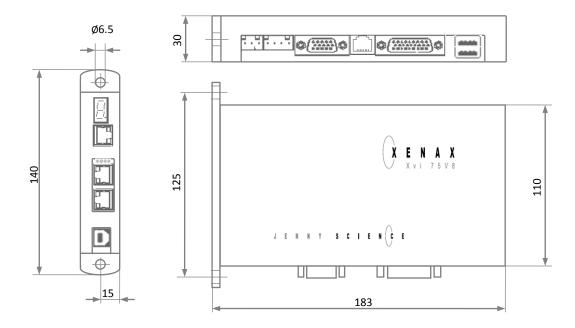
EtherCAT (CoE) DS402, Beckhoff®, OMRON®, TRIO® MC

POWERLINK (CoP) DS402, B&R®

CANopen DS402

EtherNet/IP DS402, Allen-Bradley

PROFINET (PROFIdrive) SIMATIC, SIMOTION, SINUMERIK


SMU Safety Functions STO Safe Torque Off

**SS1** Safe Stop 1 **SS2** Safe Stop 2

**SLS** Safely-Limited Speed

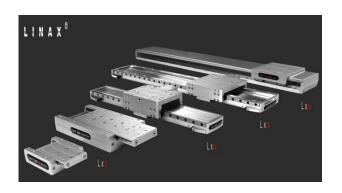
Start-up Key ID number for Master Slave and application memory.

#### 1.3 Dimensions



| Dirt resistance | IP 20 |
|-----------------|-------|
| Weight          | 550g  |

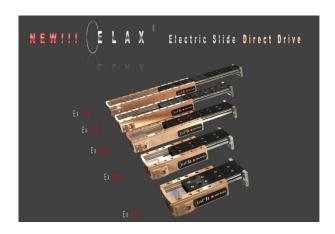



#### **2 Controllable Motor Types**

#### 2.1 Linear Motor Axes and Electric Slides

#### LINAX® Linear Motors

3 phase synchronous linear motor with encoder RS422 A/A\*, B/B\* und Z/Z\* and distance-coded reference marks.


Special feature: Linear motor identification and temperature monitoring over I2C bus.



# ELAX® Electric Slides with Linear Motor

ELAX® is the evolutionary step of the widespread pneumatic slides. The great accomplishment is the patented compact integration of the linear motor in the slider case, resulting in a force/volume ratio which has hitherto never been achieved.

Special feature: Linear motor identification and temperature monitoring over I2C bus.



#### 2.2 Servo Motors in our Product Line

#### Lafert, RAxx, RTxx

AC-Servo motors with encoder A/A\*, B/B\* and Z/Z\* and hall sensors e.g.

AEG B28 D4 0,4Nm, 6000 U/min.

Optionally available with brakes for vertical applications.







#### 2.3 Customary Servo Motors

#### Faulhaber®, Maxon®

AC / DC / EC brushless servo motors with incremental encoder RS422 A/A\*, B/B\* and Z/Z\* and hall sensors, as well as DC brush-type servo motors with incremental encoder.

For brushless AC/EC servo motors there are hall signals and incremental encoder necessary.



#### 3 Hardware and Installation

#### 3.1 Environmental Conditions

| Storage and transport       | No outdoor storage. Warehouses have to be well ventilated and dry. Temperature from -25°C up to +55°C |
|-----------------------------|-------------------------------------------------------------------------------------------------------|
| Temperature while operating | 5°C -50°C environment, after 40°C performance reduction                                               |
| Humidity while operating    | 10-90% non-condensing                                                                                 |
| Air conditioning            | No external air conditioning needed; integrated heat sink.                                            |
| MTBF                        | > 120'000h for housing internal temperature of < 50°C                                                 |

#### 3.2 Assembly and Installation

Assembly with two screws on an electrically conductive rear wall e.g. the back wall of a switch cabinet.

For a series mounting the distance between the devices has to be at least 10mm and the distance to the floor has to be at least 40mm.



We recommend mounting the devices in vertical orientation to ensure a good cooling air circulation.





#### 4 Functional Safety - TÜV certified

#### 4.1 Hardware Requirements

In order to use the TÜV certified safety functions a XENAX® Servo controller equipped with an optional Safety Motion Unit (SMU) is needed.

The SMU module has to be ordered by the client with a separate article number.

XENAX® Servo controllers can only be upgraded to SMU with hardware V 4.0 or higher. SMU modules can only be mounted by Jenny Science. SMU modules will only be supplied when mounted into a XENAX® Servo controller.

#### **Legal Note:**

In case of any modification or attempts of modification on the hardware by third parties, the TÜV certification is no longer guaranteed and Jenny Science declines all liability.



Functional Safety SIL 2, PL d, Cat. 3

#### 4.2 Safety Standards

| EN 61508-1:2010                                      | SIL 2 Safety Integrity Level 2               |
|------------------------------------------------------|----------------------------------------------|
| EN 61508-2:2010                                      |                                              |
| EN 61508-3:2010                                      |                                              |
| Functional safety of electrical/                     |                                              |
| electronic/programmable safety-related systems       |                                              |
| EN ISO 13849-1:2008                                  | Cat 3 Category 3                             |
| Safety of machinery, Safety-related parts of control | PL d Performance Level d                     |
| systems                                              | MTTF <sub>d</sub> 1733313 h                  |
| EN 61800-5-2:2007                                    | Safety Functions:                            |
| Adjustable speed electrical power drive systems      | STO Safe Torque Off                          |
|                                                      | SS1 Safe Stop 1                              |
|                                                      | SS2 Safe Stop 2                              |
|                                                      | SLS Safely-Limited Speed                     |
| EN 61800-5-1:2007                                    | Vibration- Shock- and Environmental Testing: |
| Adjustable speed electrical power drive systems      |                                              |
| EN 60068-2-6:2008                                    |                                              |
| EN 60068-2-27:2010                                   | Vibration (sinusoidal)                       |
| EN 60068-2-1:2008                                    | Half-Sine Shock                              |
| EN 60068-2-2:2008                                    | Cold Test                                    |
| EN 60068-2-78:2010                                   | Dry heat Test                                |
|                                                      | Damp heat Test                               |
|                                                      |                                              |



| EN 61000-6-2:2005 Electromagnetic compatibility (EMC), Immunity for industrial environments                                             | EMC Immunity Testing, Industrial Class A                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EN 61326-3-1<br>IFA:2012<br>EN 61326-1, EN 61800-3, EN 50370-1                                                                          | Immunity for Functional Safety Functional safety of power drive systems Electrostatic discharges ESD, Electromagnetic Fields, Fast electric transients Bursts, radio frequency common mode |
| EN 61000-6-3:2001  Electromagnetic compatibility (EMC), Emission standard for residential, commercial and light-industrial environments | EMC Emissions Testing, Residential Class B                                                                                                                                                 |
| EN 61326-1, EN61800-3, EN50370-1<br>IFA:2012                                                                                            | Radiated EM Field, Interference voltage<br>Functional safety of power drive systems                                                                                                        |

#### 4.3 Basic Conditions

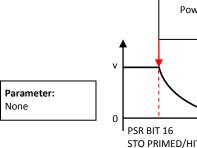
| Motor Types      | Functional Safety with SMU can be used for all LINAX® and ELAX® linear motors axes, as well as rotary brushless motors with different A/B/Z encoder signals. Rotary brush type DC motors are not subject to the functional safety. |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Signaling        | A possible signaling to the user of the safety state has to be completed with an external controller with a safety output.                                                                                                         |
| Commissioning    | The configuration assessment has to be warranted by the client for each modification of the functional safety and its parameters through commissioning.                                                                            |
| External Devices | Devices which are connected to the XENAX® servo controller over I/O's or a communication line, have to provide a basic insulation or an impulse test according to EN 60947-1 or a comparable standard.                             |



#### 4.4 Technical Data Safety

| Process safety time (between appearance of a potential dangerous error until reaction time of the SMU) | < 5ms                                                                                                                                                                                      |  |  |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Reaction time of the security inputs (until activation of a safety function)                           | < 1ms                                                                                                                                                                                      |  |  |
| Activation of a safety function                                                                        | Switching on two channel to 0V  One-channel switched safety inputs lead to turn off of the power stage and requires a restart of the XENAX® servo controller.                              |  |  |
| Level of safety inputs                                                                                 | >21.0V safety input inactive < 2.0V safety input active Voltage levels outside of these limits are prohibited.                                                                             |  |  |
| Hierarchy of safety functions                                                                          | Hierarchy Safety Functions  4 STO Safe Torque Off  3 SS1 Safe Stop 1  2 SS2 Safe Stop 2  1 SLS Safely Limited Speed  Safety functions of higher hierarchy levels overdrive the ones below. |  |  |
| Deceleration ramps for SS1  Profile Position Mode and Cyclic Synchronized Position Mode (RT-Ethernet)  | Trough parameter ED (Emergency Deceleration)                                                                                                                                               |  |  |
| Deceleration ramps for SS2  Profile Position Mode  Cyclic Synchronized Position Mode (RT-Ethernet      | With Parameter ED (Emergency Deceleration)  Indicated by superior master controller                                                                                                        |  |  |
| Deceleration ramps for SLS  Profile Position Mode                                                      | After speed infringements through parameter ED (Emergency Deceleration)                                                                                                                    |  |  |
| Cyclic Synchronized Position mode (RT-Ethernet)                                                        | Indicated by superior master controller                                                                                                                                                    |  |  |



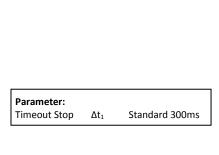

#### 4.5 Safety Functions

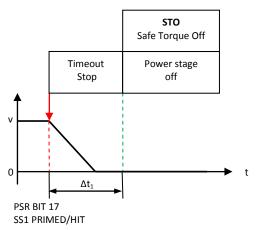
#### 4.5.1 STO, Safe Torque Off

**STO** Safe Torque Off

#### According IEC 61800-5-2

Immediate shut-down of the output stage.

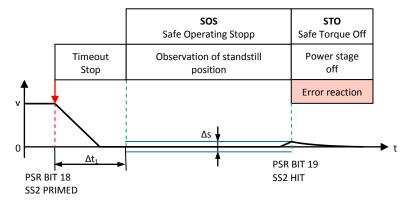



#### 4.5.2 SS1, Safe Stop 1

Stop followed by shut-down of the output stage

(Stop category 1)

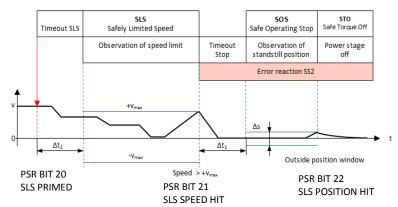





#### 4.5.3 SS2, Safe Stop 2

Stop while remaining in stop position, axis remains under power, power stage active. Then observation of stop-position, status SOS (Safe Operating Stop). If exceeding the position limit, STO will be triggered. Shut-down of the output stage (stop category 2)

| Parameter       |     |                     |
|-----------------|-----|---------------------|
| Timeout Stop    | Δt1 | Standard 300ms      |
| Position window | Δs  | Standard +-2500 Inc |






#### 4.5.4 SLS, Safely Limited Speed

Observation of a safe speed. If Safety Limited Speed (SLS) is exceeded, Safe Stop (SS2) while observing the position window. If position window is exceeded as well, then triggering STO, shut-down of the output stage. Adjustment of speed during SLS time out has to be specified by user.

| 8                    |                    |          |                |
|----------------------|--------------------|----------|----------------|
| Parameter:           |                    |          |                |
| Timeout SLS          | $\Delta t_2$       | Standard | 300ms          |
| Safely Limited Speed | $\mathbf{v}_{max}$ | Standard | +-50'000 Inc/s |
| Timeout Stop         | $\Delta t_1$       | Standard | 300ms          |
| Position window      | Δs                 | Standard | +-2500 Inc     |
|                      |                    |          |                |



## 4.6 Functional Safety Parameterization in WebMotion®

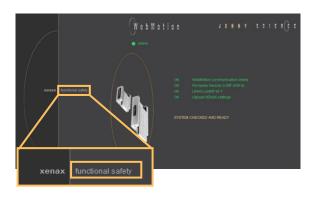
#### 4.6.1 Display Active Safety Parameters

The defined Safety Functions and parameters are shown in WebMotion® in the menu application/io.

This safety information can only be read, not modified.

The parameters of the Safety Functions can be made visible by pressing "Safety Param".

Please refer to chapter 11: "WebMotion®" for further explanations on WebMotion® interface.


If there is a Safety Motion Unit in the XENAX® and no parameter would be assign. It will show it, in red, over the Input Function and a button appears where you can directly switch to the Safety page to enter the parameter.



#### 4.6.2 Modification of Safety Parameters

The safety parameters can be modified with WebMotion® and the functional safety login:

Enter IP address of the XENAX® servo controller and add "/SAFETY.html" in Web browser.
E.g. http://192.168.2.190/SAFETY.html



## Password: **SafetyXvi75V8** "OK"

on to canital and small

**Note:** Please pay attention to capital and small letters.



#### **Actual**

Current safety parameters of XENAX® servo controller with SMU.

#### New

This is where new safety parameters can be selected from the drop down menu. They are activated in XENAX® servo controller by pressing "save".

#### save

to XENAX®:

The modified safety parameters are being sent to XENAX® / SMU. The active parameters are visible in the column XENAX®.

to File:

The safety parameters on the SMU are saved into a file.

#### open

Safety parameters can also be loaded from a pc file.

In order to be activated on the XENAX® servo controller, the parameters have to be saved by pressing on the save → to XENAX.

#### **ED x 1000**

The Parameter ED "Emergency Deceleration" muss be set as big, that STOP and SLS Timeout can be hold by stopping.

By pressing "EXIT" you exit functional safety and get back to WebMotion®.



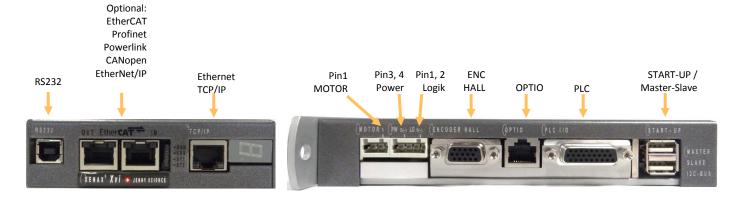


**Note:** The Signal of an active safety function has to be operated by a higher level control system.

#### 5 UL

For UL-conformity, the XENAX® servo controllers need to be used with the Brake Energy Converter from Jenny Science AG to guarantee voltage levels during dynamic braking within DVC A Levels.

Please refer Manual\_Brake\_Energy\_Converter.pdf


#### 5.1 Ratings

| Description                                      | Data                                                                                                           |  |  |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|
| Input (PW)                                       | 24 – 36 VDC max. 6.93 A 15.59A peak                                                                            |  |  |
| Input (LG)                                       | 24 VDC max 1.3 A                                                                                               |  |  |
| Output (Motor)                                   | 0 – 25.5V ac, 3phase, 5.7A, 18A peak                                                                           |  |  |
| Power Supply                                     | These products are intended for operation within                                                               |  |  |
| Power Supply                                     | circuits not connected directly to the supply mains                                                            |  |  |
|                                                  | (galvanically isolated from the supply).                                                                       |  |  |
|                                                  | The XENAX® Servocontroller/s need to be used with                                                              |  |  |
|                                                  | the Brake Energy Converter to stay within the 36                                                               |  |  |
|                                                  | DVC A Limits                                                                                                   |  |  |
|                                                  | Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit       |  |  |
|                                                  | protection must be provided in accordance with the                                                             |  |  |
|                                                  | National Electrical Code and any additional local                                                              |  |  |
|                                                  | codes.                                                                                                         |  |  |
|                                                  |                                                                                                                |  |  |
|                                                  | For Canada (ENG): Integral solid state short circuit                                                           |  |  |
|                                                  | protection does not provide branch circuit protection. Branch circuit protection must be                       |  |  |
|                                                  | provided in accordance with the Canadian Electrical                                                            |  |  |
|                                                  | Code, Part I.                                                                                                  |  |  |
|                                                  |                                                                                                                |  |  |
|                                                  | For Canada (F): Des protections intégrées, à relais                                                            |  |  |
|                                                  | statique, contre les court circuits, ne protègent pas contre les circuits de dérivation. Une protection contre |  |  |
|                                                  | les circuits de dérivation doit être fournie                                                                   |  |  |
|                                                  | conformément au code canadien de l'électricité,                                                                |  |  |
|                                                  | Partie I.                                                                                                      |  |  |
| Maximum Surrounding Air Temperature              | + 45°C                                                                                                         |  |  |
| Temperature Wago Connectors                      | -60°C 100°C                                                                                                    |  |  |
| remperature wago connectors                      | 00002000                                                                                                       |  |  |
| Motor Overload Protection for motors other than  | External or Remote Motor Overload Protection and                                                               |  |  |
| the LINAX® / ELAX® Linear Motors                 | overtemperature sensing need to be provided.                                                                   |  |  |
| Motor Overload Protection for the LINAX® / ELAX® | The proper connection and the rating of the load                                                               |  |  |
| Linear Motors                                    | imposed by the equipment on the protector contacts.                                                            |  |  |
|                                                  | Power output: 0-25.5 VAC, 3 phase, 5.7 A, 18 A peak                                                            |  |  |
|                                                  | EATTERS Links file Links file County                                                                           |  |  |
| UL File Nr.                                      | E477533, Link to file, Link to file Canada                                                                     |  |  |



#### **6 Electrical Connections**

#### XENAX® Xvi 75V8



#### 6.1 Plug Arrangement

#### **Description** Plug Type

RS232 USB-B socket

Real time Ethernet (optional) 2 x RJ45 socket with status LED

CANopen (optional) 9 Pol socket D-Sub

Ethernet TCP/IP RJ45 socket with status LED

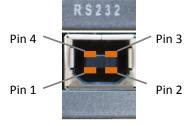
MOTOR 3 pole plug Wago, pitch 3,5mm POWER / LOGIK 4 pole plug Wago, pitch 3,5mm

ENCODER HALL 15 pole plug D-Sub High Density

OPTIO 8 pole socket RJ45

PLC I/O 26 pole plug D-Sub High Density

START-UP / MASTER-SLAVE 2 x 4 pole plug USB-A


#### 6.2 Plug Pin Configuration

#### 6.2.1 RS232

#### **USB-B Socket**

The serial interface RS232 is led over a 4 pole USB-B socket.

| USB Socket | XENAX® | PC/SPS |
|------------|--------|--------|
| 1          | N.C.   |        |
| 2          | RX —   | тх     |
| 3          | тх —   | RX     |
| 4          | GND —  | — GND  |





#### 6.2.2 Motor Plug 3 Phase

| Wago 3 Pole Plug | LINAX® / ELAX® 3 Phase | Servo motor<br>3 Phase | DC Motor |
|------------------|------------------------|------------------------|----------|
| 1                | U (white)              | U                      | DC +     |
| 2                | V (brown)              | V                      | DC -     |
| 3                | W (green)              | W                      |          |

#### 6.2.3 Logic and Power Supply

| Wago 4 Pole Plug |           |                 |  |
|------------------|-----------|-----------------|--|
| 1                | 0, GND    | Adaptor logic   |  |
| 2                | 24V DC    | - Adapter logic |  |
| 3                | 0, GND    | Adapter newer   |  |
| 4                | 12-75V DC | Adapter power   |  |

The typical POWER supply is 24V DC. For the stronger LINAX® F40 / F60 axes with high masses (>2kg) or high dynamics (>1.5m/s) a POWER supply of 48V or 72V DC is applicable. Power demand for one Axis is 3-5A / for two axes 5-7A / for 3 axes 7-10A.

Important: The 0 volt connection of the logic supply (pin 1) and the 0 volt connection of the power supply (pin 3) have to be connected to the ground/chassis star point of the switch cabinet.

#### Note:

In case of emission sensitivity it is recommended to twist the supply cable for logic and power.





#### 6.2.4 Encoder and Hall Signals

| 15 pole D-Sub socket | Signal            | Description                                                          |  |
|----------------------|-------------------|----------------------------------------------------------------------|--|
| 1                    | GND               | Together, for encoder and hall 0V supply, only 1 pin                 |  |
| 2                    | 5V Encoder        | 150 mA for encoder supply                                            |  |
| 3                    | Encoder A         | Pull up 2,7kΩ to 5V, differential input 26LS32                       |  |
| 4                    | Encoder A*        | Middle level: pull up 2,7kΩ to 5V, Pull down 2,2kΩ,                  |  |
|                      |                   | differential input 26LS32, 330Ω internal between Pin3/4              |  |
| 5                    | Encoder B         | Pull up 2,7kΩ to 5V, differential input 26LS32                       |  |
| 6                    | Encoder B*        | Middle level: pull up 2,7k $\Omega$ to 5V, pull down 2,2k $\Omega$ , |  |
|                      |                   | differential input 26LS32, 330 $\Omega$ internal between Pin5/6      |  |
| 7                    | Encoder Z         | Pull up 2,7kΩ to 5V, differential input 26LS32                       |  |
| 8                    | Encoder Z*        | Middle level: pull up 2,7k $\Omega$ to 5V, pull down 2,2k $\Omega$ , |  |
|                      |                   | differential input 26LS32, 330 $\Omega$ E internal between Pin7/8    |  |
| 9                    | HALL 1            | Pull up 2,7kΩ to 5V, differential input 26LS32                       |  |
| 10                   | HALL 1*           | Middle level: Pull up 2,7k $\Omega$ to 5V, pull down 2,2k $\Omega$ , |  |
|                      |                   | differential input 26LS32                                            |  |
| 11                   | HALL 2 / -TMP     | Pull up 2,7k $\Omega$ to 5V, differential input 26LS32 / over        |  |
|                      |                   | temperature signal motor                                             |  |
| 12                   | HALL 2*           | Middle level: Pull up 2,7k $\Omega$ to 5V, Pull down 2,2k $\Omega$ , |  |
|                      |                   | differential input 26LS32                                            |  |
| 13                   | HALL 3 / I2C_SCL  | Pull up 2,7kΩ auf 5V, differential input 26LS32 /                    |  |
|                      |                   | I2C clock signal                                                     |  |
| 14                   | HALL 3*           | Middle level: Pull up 2,7k $\Omega$ to 5V, pull down 2,2k $\Omega$ , |  |
|                      |                   | differential input 26LS32                                            |  |
| 15                   | 5V Hall / I2C_SDA | 5V, 150 mA / I2C data signal                                         |  |

# 6.2.5 Definition of Rotating Direction for Servo Motors

|                                                                               | Sight on front surface motor shaft, turn the shaft clockwise, the meter has to count upwards |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Switch encoder A/B<br>Switch +/- motor power                                  | Switch rotating direction for DC brush type servo motors                                     |
| Switch encoder A/B Switch hall1 with hall3 Switch winding-phase 1 and phase 2 | Switch rotating direction for 3phase brushless servo motors                                  |
| Phase 1 to phase 2, 2 to 3 and 3 to 1<br>Hall 1 to hall2, 2 to 3 and 3 to 1   | Switch phase connection for brushless servo motors without change of rotating direction      |



#### 6.2.6 OPTIO Pulse/Dir, Second Encoder Channel

## PULSE / DIRECTION CONTROL, MODE 2, as standard Parameter MODE and INC PER PULSE



**GND** internal Pin 1 **GND** 5V internal Pin 2 5٧ Pull up 2,7k $\Omega$  to 5V, differential input 26LS32 Pin 3 **PULS** Pull up 2,7k $\Omega$  to 5V, differential input 26LS32 Pin 4 **DIRECTION** Middle level: Pull up 2,7k $\Omega$  to 5V, pull down 2.2k $\Omega$ , Pin 5 **DIRECTION\*** differential input 26LS32

Pin 6

Middle level: Pull up 2,7kΩ to 5V, pull down 2.2kΩ,

differential input 26LS32

#### ENCODER 2 Electronic gear, MODE 1, as standard Parameter SYNCH RATIO 10 = 1:1



**PULS\*** 

**GND** intern Pin 1 **GND** 5V intern Pin 2 5٧ Pull up 2,7k $\Omega$  to 5V, differential input 26LS32 Pin 3 Α Pull up 2,7k $\Omega$  to 5V, differential input 26LS32 Pin 4 В в\* Middle level: Pull up 2,7k $\Omega$  to 5V, pull down 2.2k $\Omega$ , Pin 5 differential input 26LS32 Α\* Middle level: Pull up 2,7k $\Omega$  to 5V, pull down 2.2k $\Omega$ , Pin 6 differential input 26LS32



#### 6.2.7 PLC I/O

#### Output

| Signal                                                   | D-Sub | PLC Cable | PLC I/O          |
|----------------------------------------------------------|-------|-----------|------------------|
| Source PNP: 24V/100mA, Sink NPN: open collect. 24V/400mA | Pin 1 | White     | Output 1 (0/24V) |
| Source PNP: 24V/100mA, Sink NPN: open collect. 24V/400mA | Pin 2 | Brown     | Output 2 (0/24V) |
| Source PNP: 24V/100mA, Sink NPN: open collect. 24V/400mA | Pin 3 | Green     | Output 3 (0/24V) |
| Source PNP: 24V/100mA, Sink NPN: open collect. 24V/400mA | Pin 4 | Yellow    | Output 4 (0/24V) |
| Source PNP: 24V/100mA, Sink NPN: open collect. 24V/400mA | Pin 5 | Grey      | Output 5 (0/24V) |
| Source PNP: 24V/100mA, Sink NPN: open collect. 24V/400mA | Pin 6 | Ping      | Output 6 (0/24V) |
| Source PNP: 24V/100mA, Sink NPN: open collect. 24V/400mA | Pin 7 | Blue      | Output 7 (0/24V) |
| Source PNP: 24V/100mA, Sink NPN: open collect. 24V/400mA | Pin 8 | Red       | Output 8 (0/24V) |

#### Input

| 24V Input, Ri 31k $\Omega$          | Pin 17 | White-grey | Input 1                 |
|-------------------------------------|--------|------------|-------------------------|
| 24V Input, Ri 31k $\Omega$          | Pin 18 | Grey-Brown | Input 2                 |
| 24V Input, Ri 31k $\Omega$          | Pin 19 | White-pink | Input 3                 |
| 24V Input, Ri 31k $\Omega$          | Pin 20 | Pink-Brown | Input 4                 |
| 24V Input, Ri 31k $\Omega$          | Pin 21 | White-blue | Input 5                 |
| 24V Input, Ri 31k $\Omega$          | Pin 22 | Brown-blue | Input 6                 |
| 24V Input, Ri 31k $\Omega$          | Pin 23 | White-red  | Input 7                 |
| 24V Input, Ri $31 \mathrm{k}\Omega$ | Pin 24 | Brown-red  | Input 8 (program Start) |
|                                     |        |            |                         |

24V Input, Ri  $31k\Omega$  / Bit 0 binary coded 24V Input, Ri  $31k\Omega$  / Bit 1 binary coded 24V Input, Ri  $31k\Omega$  / Bit 2 binary coded 24V Input, Ri  $31k\Omega$  / Bit 3 binary coded

Pin 13 White-green Input 9
Pin 14 Brown-green Input 10
Pin 15 White-yellow Input 11
Pin 16 Yellow-Brown Input 12

MODE >=10 Input 9-12, binary coded, for program number 1-15, input 8 fix dedicated for program start (static, not controlled by trigger flange)



#### **Enabling Power Stage**

Activate the function with DIP-switch

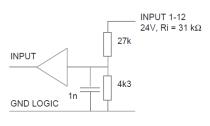


DIP switch OFF HW power stage enabling with 24V on Pin 9 Input open or 0V = power stage blocked

Pin 9 black Enable PWR / Input

DIP switch ON Always enabling power stage, Pin 9 inactive

| 2A                                | Pin 10 | violet    | GND                            |
|-----------------------------------|--------|-----------|--------------------------------|
| 24V / 80mA                        | Pin 11 | Grey pink | Pulse Output (not implemented) |
| 24V / 200mA (total Pin 12+Pin 26) | Pin 12 | Red-blue  | 24V Output                     |
|                                   |        |           |                                |


2A Pin 25 White-black GND
24V / 200mA (total Pin 12+Pin 26) Pin 26 Brown-black 24V Output



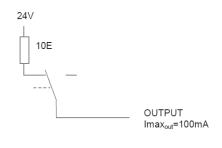
#### 6.3 Internal I/O Circuit

#### **INPUT 1-12**





HIGH or LOW ACTIVITY programmable

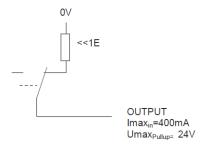

#### **OUTPUT 1-8**

#### **TYPE SOURCE**

| SOT       | TYPE   | SOA       | ACTIVITY |
|-----------|--------|-----------|----------|
| Bit-value |        | Bit-value |          |
| 0,1       | SOURCE | 1         | HIGH     |
|           |        | 0         | LOW      |

| Output | Output |
|--------|--------|
| ON     | OFF    |
| 24V*   | open*  |
| open   | 24V    |

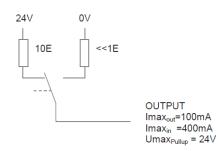
All Output SOURCE SOT 21845 SOA 255 / 0




#### **TYPE SINK**

| SOT       | TYPE | SOA       | ACTIVITY |
|-----------|------|-----------|----------|
| Bit-value |      | Bit-value |          |
| 0,0       | SINK | 1         | HIGH     |
|           |      | 0         | LOW      |

| Output | Output |
|--------|--------|
| ON     | OFF    |
| open   | 0V     |
| 0V     | open   |


All Output SINK SOT 0 SOA 255 / 0



#### TYPE SOURCE/SINK

| SOT<br>Bit-value | TYPE             | SOA<br>Bit-value | ACTIVITY | Output<br>ON | Output<br>OFF |
|------------------|------------------|------------------|----------|--------------|---------------|
| 1,0              | SINK /<br>SOURCE | 1                | HIGH     | 24V          | 0V            |
|                  |                  | 0                | LOW      | 0V           | 24V           |

All Output SOURCE/SINK SOT 43690 SOA 255 / 0





#### 6.4 Output Configuration

# TYPE SOT (Set Output Type) parameter 16 Bit 2 Bit-value per output



| Output     | 3   | 3   | 7  | 7  | $\epsilon$ | 5  | 5 | 5 | 4 | 4 | 3 | 3 | 2 | 2 |   | 1 |
|------------|-----|-----|----|----|------------|----|---|---|---|---|---|---|---|---|---|---|
| SOT Bit    | 15  | 14  | 13 | 12 | 11         | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| Bit- value | 0   | 1   | 0  | 1  | 0          | 1  | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| Decimal    | 218 | 245 |    |    |            |    |   |   |   |   |   |   |   |   |   |   |

\*Default setting all output on SOURCE >SOT 21845

#### **ACTIVITY**

SOA (Set Output Activity) parameter 8 Bit 1 Bit-value per output



| Output    | 8   | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
|-----------|-----|---|---|---|---|---|---|---|
| SOA Bit   | 7   | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| Bit-value | 1   | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Decimal   | 255 |   |   |   |   |   |   |   |

\*Default setting all output HIGH ACTIVE >SOA 255

#### **Parameter Values**

| Output | SOT<br>Bit | SOT<br>Bit-value | ТҮРЕ        | SOA<br>Bit | SOA<br>Bit-value | ACTIVITY | Output<br>ON | Output<br>OFF |
|--------|------------|------------------|-------------|------------|------------------|----------|--------------|---------------|
| 1      | 0,1        | 0,0              | SINK        | 0          | 0                | HIGH     | 0V           | open          |
|        |            |                  |             | 0          | 1                | LOW      | open         | 0V            |
|        |            |                  |             |            |                  |          |              |               |
| 2      | 2,3        | 0,1              | SOURCE      | 1          | 0                | LOW      | open         | 24V           |
|        |            |                  |             | 1          | 1                | HIGH     | 24V*         | open*         |
|        |            |                  |             |            |                  |          |              |               |
| 3      | 4,5        | 1,0              | SINK/SOURCE | 2          | 0                | LOW      | 0V           | 24V           |
|        |            |                  |             | 2          | 1                | HIGH     | 24V          | 0V            |

#### **Examples**

| Output | SOT   | SOT       | TYPE        | SOA | SOA       | ACTIVITY | Output | Output |
|--------|-------|-----------|-------------|-----|-----------|----------|--------|--------|
|        | Bit   | Bit-value |             | Bit | Bit-value |          | ON     | OFF    |
| 1      | 0,1   | 0,0       | SINK        | 0   | 0         | HIGH     | 0V     | open   |
| 2      | 2,3   | 0,1       | SOURCE      | 1   | 1         | HIGH     | 24V*   | open*  |
| 3      | 4,5   | 0,1       | SOURCE      | 2   | 1         | HIGH     | 24V*   | open*  |
| 4      | 6,7   | 0,1       | SOURCE      | 3   | 1         | HIGH     | 24V*   | open*  |
| 5      | 8,9   | 1,0       | SINK/SOURCE | 4   | 0         | LOW      | 0V     | 24V    |
| 6      | 10,11 | 1,0       | SINK/SOURCE | 5   | 0         | LOW      | 0V     | 24V    |
| 7      | 12,13 | 1,0       | SINK/SOURCE | 6   | 1         | HIGH     | 24V    | 0V     |
| 8      | 14,15 | 0,0       | SINK        | 7   | 1         | HIGH     | 0V     | open   |

 $\begin{array}{cccc} \textbf{SOA} & & 110011110_b & & \textbf{206}_d \\ \textbf{SOT} & & 0010101001010100_b & & \textbf{10836}_d \end{array}$ 

10836





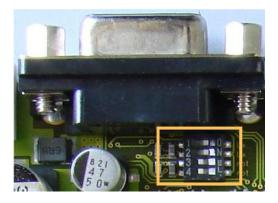
#### 7 Configuration Motor Type Linear / Rotary

The motor type is set by hardware internally in the XENAX® servo controller before dispatch. The configuration is visible on the sticker with the serial number.

LINAX® Linear Motor ELAX® Electric Slide

XENAX® Xvi 75V8 EtherCAT, Lx oder Ex SN Xvi-75V8.xxxx JENNY SCIENCE AG

**Rotary Servo Motor** 


XENAX® Xvi 75V8 EtherCAT, Ro SN Xvi-75V8.xxxx JENNY SCIENCE AG

Motor Type Bit 1 Bit 2 Bit 3 Bit 4 LINAX® / ELAX® ON ON OFF **OFF** linear motor Rotary servo motor OFF OFF ON ON

A subsequent readjustment of motor type is possible through the according setup of the DIP-switch. A change in motor type should be updated on the sticker with the serial number.

#### Please note:

For the older hardware versions <3, the DIP-switch is located on the opposite side of the circuit board.





#### 8 RS232 Serial Interface

#### 8.1 Baud Rate RS232 XENAX®

Setting the baud rate RS232 using the 8-bit DIP-switch (remove the cover to find the multi switch). The new baud rate will be activated after switching the device off and on again.



| Baud Rate                             | Bit 1 | Bit 2 | Bit 3 | Bit 4 | Bit 5 | Bit 6 | Bit 7 | Bit 8 |
|---------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| RS232 9600 baud                       | X     | x     | x     | x     | x     | x     | OFF   | OFF   |
| RS232 115'200 baud (default)          |       | x     | x     | x     | x     | x     | OFF   | ON    |
| RS 232 57'600 baud                    | X     | X     | X     | X     | X     | X     | ON    | OFF   |
| RS232 19'200 baud                     | X     | X     | X     | X     | X     | X     | ON    | ON    |
| Data 8 Bit<br>Parity No<br>Stop 1 Bit |       |       |       |       |       |       |       |       |

#### 9 ETHERNET TCP/IP Interface

Please also consult the TUTORIAL VIDEO JSC Tutorial 1: TCP/IP Connection on our website, in which you can see all possible obstacles and according measures to solve the problems which might occur during the TCP/IP connection.

If the error "connection to Gateway (Port 10001) refused" occurs when opening WebMotion® there might be the following causes:

- WebMotion® is opened twice with the same TCP/IP address
- Baud rate of XENAX® does not correspond to baud rate in XPort
  - Setup records are wrong



#### 9.1 Baud Rate Ethernet Gateway (XPort)

#### Important:

On operation with WebMotion® the baud rate of XPort (Ethernet gateway) must be in accordance with the baud rate of XENAX® (Default 115'200)

Start tool <u>"DeviceInstaller"</u> and search for desired XPort.



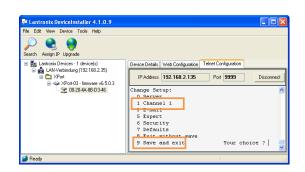
Click on IP-address, choose "Telnet Configuration", press "Connect" button and confirm with "Enter" key.

Choose selection 1 (Channel 1) and set baud rate according to XENAX® setup. Confirm all other menu items with "Enter" key.

Save setup with selection 9 (Save and exit).

Close Tool <u>"DeviceInstaller"</u> and start

WebMotion®.


IP-address of XENAX® is provided on the back side of the controller.

Connection of XENAX® to laptop/PC over a normal RJ45 network cable.

When connecting laptop/PC directly to XENAX®, it may possibly need a crossed RJ45 cable. However, with newer network types a crossed RJ45 cable is not necessary anymore.

**Display Ethernet Plug** 

| Color  | LED left      | Color  | LED right   |
|--------|---------------|--------|-------------|
| Off    | No connection | Off    | No Activity |
| Orange | 10Mbps        | Orange | Half-duplex |
| Green  | 100Mbps       | Green  | Full-duplex |

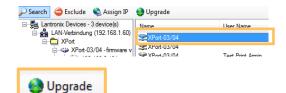


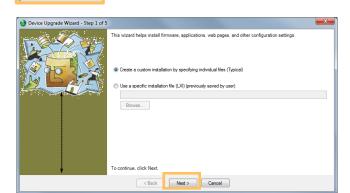




#### 9.2 Default Setup Records Upgrade

#### **Open DeviceInstaller**


Connect XENAX® with Ethernet cable and power.


Open DeviceInstaller and choose the according

XENAX® servo controller.

#### **Upgrade Setup Records**

Upgrade Setup Records in DeviceInstaller





-> Next >

->Next >



•Install setup records from a file

Choose File "Xvi\_SetupRecords\_115200.rec" with "browse". (This file can be downloaded from http://www.jennyscience.de/en/download/ under Servo Controller / Setup Records)

- ->Next >
- ->Next >

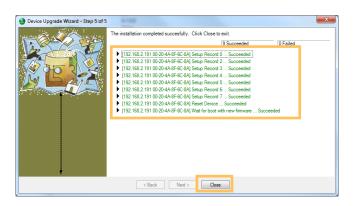
Device Upgrade Wizard - Step 3 of 5

You may copy other files over to the device.

No other files to install (typical)

Install files contained in COB partitions

Install setup records from a file


Browse...

To continue, click Next.

< Back Next > Cancel

The new setup is being upgraded and is completed when colored in green.

Close.





#### 9.3 Test IP Connection with >IPCONFIG

#### IPCONFIG command in DOS window

Test TCP/IP address range.
IP address has to be in range of 192.168.2.xxx
If necessary adjust IP address in computer "network environment" to e.g. IP 192.168.2.200.

xxx = 001 - 255
≠ IP Address XENAX®

#### 9.4 Test Connection with >PING

#### PING command in DOS window

IP address is provided on the back side of XENAX®.

If no response, check direct connection with crossed

RJ45 cable.

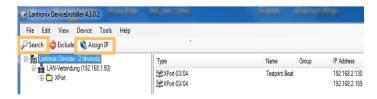
If you do not know the IP address, you can look it up with the <u>DeviceInstaller</u>, provided that the Ethernet connection is working o.k.

# C:\Dokumente und Einstellungen\ping 192.168.2.100 Ping wird ausgeführt für 192.168.2.100 mit 32 Bytes Daten: Antwort von 192.168.2.100: Bytes=32 Zeit/ims TTL=64 Ping-Statistik für 192.168.2.100: Pakete: Gesendet = 4, Empfangen = 4, Verloren = 0 (0% Verlust Ga. Zeitangaben in Millisek: Minimum = 0ms, Maximum = 0ms, Mittelwert = 0ms

#### 9.5 Change IP Address with "Device Installer"

To view and change the IP address as well as to update WebMotion®, the <u>DeviceInstaller</u> tool is used.

Use link on the right and click on <u>DeviceInstaller</u>.


Select XPort and install it.

http://www.lantronix.com/devicenetworking/utilities-tools/device-installer.html

The DeviceInstaller needs .NET Framework driver.

#### **Search IP address**

Start DeviceInstaller von Lantronix from Lantronix and select "Search" to look for existing IP addresses.



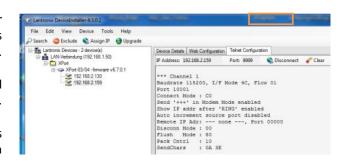
#### **Change IP address**

On "Assign IP" select "Assign a specific IP address".

Now you can set a new IP address.






#### 9.6 Communication Settings XPort

To communicate with WebMotion® and higher control systems via Ethernet TCP/IP, XENAX® is delivered with the default XPort settings on the right.

The parameters can be changed with the tool DeviceInstaller in menu "Telnet Configuration".

You can reset the parameters to default settings manually or by uploading the setup-record file (on request).

We recommend strongly using the default XPort settings. Otherwise, the correct functionality of WebMotion® and the communication over Ethernet cannot be guaranteed.



```
*** Channel 1
Baudrate 115200, I/F Mode 4C, Flow 01
Port 10001
Connect Mode: C0
Send '+++' in Modem Mode enabled
Show IP addr after 'RING' enabled
Auto increment source port disabled
Remote IP Adr: --- none ---, Port 00000
Disconn Mode: 00
Flush Mode: 80
Pack Cntrl: 10
SendChars: 0A 3E
```

#### 9.7 PORT Address

The default port address is 10001. WebMotion® addresses this port as a standard.

If another port address has to be communicated, the port address has to be set antecedently on XPort.

Example: Connection on port No. 10005

When starting WebMotion® in the web browser window this port address has to be entered according to the following syntax:

#### Starting WebMotion®

http://192.168.2.xxx/xenax.html? Port=10005

#### **10 ASCII Protocol**

Over Ethernet TCP/IP in the menu move axis / by command line in WebMotion®

Or via RS232 e.g. with hyper terminal.

The simple ASCII protocol works with the echo principle.

The sent characters come back as an echo and can be checked immediately.

Thus, if existing, you get a parameter value and finally the character prompt ">". If the command could not be

accepted then, it has a "?" character in the string.

#### Description Command [Parameter] Echo command accepted

Write parameters:

 Power continues
 PWC
 <CR>
 PWC <CR>
 <</th>

 Speed
 SP
 10-9'000'000 <CR>
 SPxxxxxxx<CR> <LF>>

 Acceleration
 AC 2'000-100'000'000 <CR>
 ACxxxxxxx<CR> <LF>>

Read parameters:

 Tell Position
 TP
 <CR>
 TP <CR> <LF> XXXXXXXX < CR> < LF>>

 Retrieve
 e.g. AC?
 <CR>
 AC? < CR> < LF> XXX < CR> < LF>>

 SP?
 <CR>
 SP? < CR> < LF> XXX < CR> < LF> >

Echo command not recognized or cannot be completed in the current configuration <command> <CR> <LF> ? <CR> <LF>>

Echo command cannot be accepted at this time <command> <CR> <LF> #xx <CR> <LF> >

#### #-List

| Nr. | Description                              |
|-----|------------------------------------------|
| #01 | Error in queue                           |
| #03 | Drive is active                          |
| #05 | Program is active                        |
| #13 | EE1 in queue                             |
| #14 | EE in queue                              |
| #15 | Force Calibration active                 |
| #33 | TRMA active                              |
| #34 | Rotary reference active                  |
| #36 | Gantry reference active                  |
| #38 | Reference active                         |
| #40 | Command at active bus module not allowed |
| #47 | Fault Reaction active                    |
|     |                                          |
| #65 | Value of parameter not valid             |
|     |                                          |

#### Note for sequential commands:

Terminate a command with <CR> only, no additional <LF>. Do not send a new command until you have received the prompt character ">" before



#### 10.1 ASCII Protocol TCP/IP

In TCP/IP the cohesive ASCII sequences can be splitted into different telegram packages. This is why a separate receive buffer has to be considered.

Please find detailed information in:

" Xvi75\_TCP/IP\_Socket\_

Telegram\_Events/Wireshark.pdf"

on http://www.jennyscience.de/en/download/.

#### 10.2 Asynchronous Messages (Events)

To reduce response time, status or PLC input modifications of the PLC interface can be sent automatically (events). Therefore it is not necessary to poll the status or inputs permanently.

#### **Enable Events**

Events disabled, default EVT=0 Events enabled generally EVT=1

#### Status modifications / Reference Event

Will be sent in case of generally activated events.

Power OFF @S0
Power ON / Halt @S1
In motion @S2
Error @S9
Reference finished @H

#### **PLC Input**

Inputs are selectable with ETI (Event Track Input)

Enable event of input 1..12 ETI=1..C Enable all input events ETI=0

Disable event of PLC input with DTI (Disable Track Input).

Disable event for input 1..12 DTI=1..C
Disable all input events DTI=0

Structure of input events @Ixyz with xyz as half bytes in Hexadecimal notation.



| PLC I/O pin no.                       | 16 | 15  | 14 | 13 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 |
|---------------------------------------|----|-----|----|----|----|----|----|----|----|----|----|----|
| INPUT no.                             | 12 | 11  | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  |
| Example input bits after modification | 1  | 0   | 1  | 1  | 0  | 0  | 1  | 0  | 1  | 1  | 0  | 1  |
| Event general @I                      |    | Х   |    |    |    | Ŋ  | /  |    |    | Z  |    |    |
| Example Event @I                      |    | "B" |    |    |    | "  | 2" |    |    | "[ | )" |    |

#### **Default Settings after Power ON**

After power on of XENAX® servo controller or application download, default settings are active

Events OFF EVT=0
PLC Input Events OFF DTI=0

#### 11 Install JAVA Plugin

Check installed JAVA version.

The JAVA Plugin Software version hast to be higher or equal version 7.

Information on the installed JAVA version can be retrieved under: Start / Control Panel / JAVA / General / Info.

We highly recommend uninstalling older JAVA versions before installing the new version.

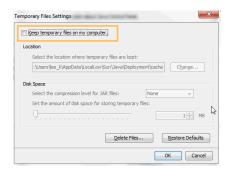


Download Java

http://www.java.com/de/download/manual.jsp



#### 11.1 Applet Cache


The WebMotion® applet should be fully reloaded by each new start of the browser or when the browser is being updated. To prevent problems and errors during the loading process, the Cache option has to be deactivated.

Open JAVA Control Panel: Start / Control Panel / JAVA

**Temporary Internet Files** 



Deactivate "Keep temporary files on my computer".






#### 11.2 Disable Java certificate Validation

If the XENAX® servo controller is connected to a PC without internet access, the Java certificate cannot be validated. This can possibly slow down loading the WebMotion® user interface or can even lead to a time-out. The automatic certificate validation has to be deactivated.

Open the control panel of the PC → Java → Advanced → uncheck "Enable online certificate validation".



#### 12 WebMotion®

Please also consult the TUTORIAL Video

JSC Tutorial 2: Set-Up Single Axis on our website and
convince yourself of the easy axis setup with

WebMotion®.

WebMotion® is an integrated graphic user interface (website), located in XENAX®. It is loaded and activated over a web browser (Internet Explorer >= 8.0, Mozilla, Firefox, Opera, ...).

#### Note:

Please make sure that zoom-settings of the browser window are at 100% (original size). Otherwise the WebMotion® display is affected.

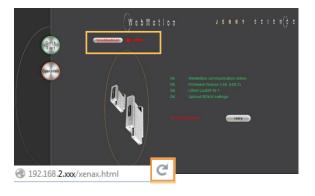
#### 12.1 Start WebMotion®

Start your web browser with the IP address number of your XENAX® and add "/xenax.html" as a suffix.

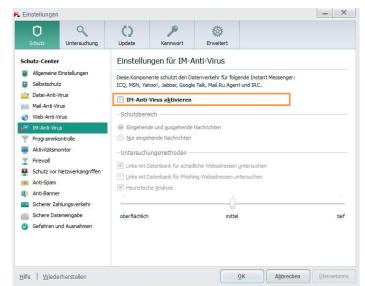
IP address is provided on the back side of the XENAX®.

#### Example:

http://192.168.2.xxx/xenax.html


XENAX® is being started with an automatic system selfcheck including type designation and version information on firmware and hardware. Moreover, WebMotion® identifies the connected linear motor or rotary motor and uploads the current XENAX® settings (parameters, programs) in to the WebMotion®.




#### Interruption of TCP/IP Connection

If the XENAX® logic supply is interrupted or if the Ethernet cable is disconnected, the TCP/IP interruption will be detected by WebMotion® and signaled with "offline". After removing the cause of the offline-mode, the TCP/IP connection has to be reloaded by updating the current web browser window.

If it is still blocked, it is recommended to first exit and then restarts the web browser.



#### 12.1.1 Error "Upload XENAX Settings®"



# The settings in Kaspersky Internet Security might be responsible if the error code "Error Upload XENAX Settings" occurs with the automatic self-check of WebMotion®.

If you are using Kaspersky or similar internet security software, the security for Instant Messenger Services has to be deactivated.

(Refer example in Kaspersky Pure 3.0)

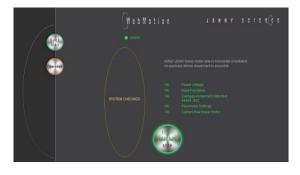


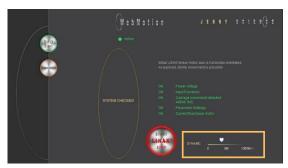
# 12.2 Quick Start only with LINAX® and ELAX® linear motor axis





The Quick Start function allows the user to setup the LINAX® or ELAX® linear motor axis with the XENAX® controller simply immediately after receipt of the components.


It is completed per mouse click, without parameter settings and without an instruction manual. By pressing the Quick Start button, a system check is automatically started including the following tests: Cable connections, power voltage, input functions, functionality of the measuring system, parameter settings and current flow of the linear motor.


In order to test the functionality of the measuring systems the system asks you to move the slider of the LINAX® linear motor axis of a distance of at least 20mm back and forth.

With the Start/Stop LINAX® or ELAX® the linear motor will be referenced automatically and will then move the distance back and forth that was indicated manually by hand before.

For the Quick Start Function it is recommended to operate the linear motor axis in horizontal orientation without a payload.

You can adjust the dynamics individually with the arrow symbol by mouse click.







### 12.3 Operation, Status Line

The status line on the lower edge of WebMotion<sup>®</sup> gives an overview of the current condition of XENAX<sup>®</sup> and the connected motor at any time. These data cannot be changed and are for the user's information only.

#### **MOTOR TMP**

Shows the current temperature of the coils in the linear motor, which is detected by a sensor. This measuring function is not possible for rotary servo motors. The temperature observation for servo motors is done by an I<sup>2</sup>T calculation.

#### **POSITION**

After referencing the linear motor the current, this indicates the absolute position of the motor in increments of the measuring system. Standard for LINAX®/ELAX® linear motors is 1Increment = 1µm.

#### **MOTOR**

Automatic identification of the connected LINAX®/ELAX® linear motor axis. Is a rotatory motor connected, it only shows "ROTATIVE"

#### **REFERENCE**

The reference is a condition to start the LINAX®/ELAX® linear motor axes. This is also how the precise current commutation is being calculated.

PENDING = Reference outstanding

DONE = Reference completed

#### **MODE**

Displays the operating mode:

0=Standard Servo

1 = El. Gera mechanism over second encoder

2 = Pulse/Dir, stepper emulation

10 = Coded Prog No Standard

12 = Coded Prog no for Stepper Controlled

#### **STATUS**

POWER OFF = off
POWER ON / HALT = On, Motor is not moving
IN MOTION = Motor is in motion
ERROR XX = error number, with a button where

describe the error and an error history

#### **INPUT**

Condition of the direct inputs 1-8, and the binary coded inputs 9-12.







#### **OUTPUT**

Condition of outputs 1-8 (Modification under menu application / I/O)

#### **PROG**

Program number, binary coded from inputs 9-12. For this binary coded program selection, the MODE has to be set on higher or equal 10, while input 8 is the trigger for program start.

# 12.4 Move Axis by Click

# 12.4.1 Move Axis by Click for LINAX®/ELAX® Linear Motors

Simple online control for setup and test of the linear motor axes.

The orange values behind the empty fields show the current registered values in XENAX®. New values can be entered in the empty fields and registered with <Enter>. These parameters will overwrite the existing values and will be registered directly in the XENAX® servo controller.

#### **SOFT LIMIT POS**

Software Limit Position, setting of an individual motion range in increments.

SLP- = position counter lower values

SLP+ = position counter upper values

Both values 0 = No limit (limit is the stroke of the connected linear motor)

# S-CURVE %

Percentage S-curve rounding of the internal motion profile, e.g. in an INDEX, generally for all motion profiles. Automatic calculation of jerk (changing of acceleration per time unit inc/ s³)

#### ACC \*1'000

Acceleration in inc/s<sup>2</sup> multiplied with a factor of 1'000

#### **SPEED**

Speed in Inc/s

#### **SP OVERRIDE %**

Override of the set speed and acceleration of a motion profile, for example for process deceleration or set up mode.



### Go Way (REL)

Input of the distance relative to the present position in increments. Start with <Enter>.

#### Go Position (ABS)

Input of the position absolute to the zero point in increments. Start with <Enter>.

#### **Rep Reverse**

Endless automatic motion back and forth.
Input of the way relative to the present position in increments. Start with <Enter>.
While running, the motors parameters such as acceleration, speed, and wait time can be adjusted online.
Stop the back and forth movement with "Stop Motion".

#### **Wait Reverse**

Wait time at reversal point of rep reverse in units of 1 milliseconds. Start with <Enter>.

#### TIME (ms)

Time of the last profile drive in milliseconds.

#### Reference

To reference the linear motor there are reference marks with different distances in between (>REF). The absolute position can be calculated when the motor passes two reference marks.

Run this function once after switching on the power.

#### Go Pos 0

(>G0) Go to position 0.

#### **Power Cont**

Power continues (>PWC)

Turning on the power stage with taking over the most recent absolute position and without the need of referencing the linear motor, e.g. after error 50 or after "Power Quit". This is only possible as long as the logic supply has not been interrupted after the linear motor was referenced.

#### **Stop Motion**

Stops the motion under control of deceleration ramp.

#### **Power Quit**

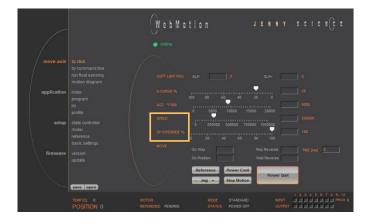
Power stage without power, the linear motor is movable by hand.



# 12.4.2 Move Axis by Click for Rotary Motors

If the XENAX® servo controller does not recognize a LINAX® or ELAX® linear motor axis, XENAX® assumes a connection with a rotary servo motor. Instead of "Go Pos 0" WebMotion® offers Jog + und Jog – functions.

#### Jog -


Runs the motor in negative direction until the command "Stop Motion" stops the motor.

#### Jog +

Runs the motor in positive direction until the command "Stop Motion" stops the motor.

While the motor is running with Jog, the dynamics SP OVERRIDE or SPEED can be adjusted online.





# 12.5 Move Axis by Command Line

XENAX® can directly be controlled by a ASCII command set.

### **COMMAND**

Transmits an ASCII command with <Enter>. Under "Recall commands" the activated commands are saved and can be reactivated by mouse click

# **RESPONSE**

shows received characters by WebMotion®.

### **COMMAND SET**

Lists all ASCII commands, recognized by XENAX®.





# 12.6 ASCII Command Set for XENAX®

Using the simple ASCII command [+PARAMETER] set, all XENAX® Servo controller functions can be activated with an extremely short reaction time.

Information about the tables:

1) Diagnosis and test functions
? Query of the programmed value

# 12.6.1 Power / Reset

| DESCRIPTION                                                                                                                | Short                     | CMD  | PARAMETER                                                  |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------|------|------------------------------------------------------------|
| Power ON incl. reset encoder counter                                                                                       | Power                     | PW   |                                                            |
| Power ON continue, keep encoder counter                                                                                    | Power continue            | PWC  |                                                            |
| Power OFF servo amplifier                                                                                                  | Power guit                | PQ   |                                                            |
| Reset setup parameters to default values                                                                                   | Reset                     | RES  |                                                            |
| Clear actual position counter, (not possible with LINAX®/ ELAX®)                                                           | Clear position to 0       | CLPO |                                                            |
|                                                                                                                            | 12.6.2 Basic Settings     |      |                                                            |
| DESCRIPTION                                                                                                                | Short                     | CMD  | PARAMETER                                                  |
| Set up of MODE (Operating) Important! In case of changing this value, the servo amplifier must be in state POWER OFF (>PQ) | Mode                      | MD   | 0, 1, 2, 10,12 / ?<br>refer WebMotion® /<br>Basic Settings |
| Inc. per pulse, MODE 2/12, pulse/direction control                                                                         | Inc per Pulse             | ICP  | 1-50                                                       |
| Synchronous ratio for electronic gear                                                                                      | Synchronous Ratio         | SR   | ± 1-1'000 : 10                                             |
| Set CI (query), CANopen Node ID, Powerlink Node ID, Remote ID in Master/Slave Configuration                                | Card Identifier           | CI   | 1-99 / ?                                                   |
| Card Identifier of Gantry Slave                                                                                            | Gantry Slave Identifier   | GSID | 0 - 4                                                      |
| Identification string max 16 characters free for user                                                                      | Servo controller ident.   | SID  | string / ?                                                 |
|                                                                                                                            | 12.6.3 Motor Settings     | S    |                                                            |
| DESCRIPTION                                                                                                                | Short                     | CMD  | PARAMETER                                                  |
| Max. motor current nominal [x10mA]                                                                                         | l stop                    | IS   | 10-1'800 / ?                                               |
| Max. motor current peak [x10mA]                                                                                            | I run                     | IR   | 10-1'800 / ?                                               |
| Pole-pair number of motor                                                                                                  | Pole pair                 | POL  | 1-100 / ?                                                  |
| Number of encoder increments per revolution                                                                                | Encoder                   | ENC  | 10-32'000 / ?                                              |
| Direction of phase control u,v,w or v,u,w                                                                                  | Phase Direction           | PHD  | 0,1 / ?                                                    |
| Orders of Hall detect sequence.  By rotating the motor clockwise, it gets 0 or 1 for the entering from the parameter PHD.  | Phase Direction Detection | PHDD | 0, 1, ?                                                    |
| Appeared ?, the Dip-switch is set to linear or the Hall wiring is wrong.                                                   |                           |      |                                                            |
| Correction of the electrical angle at new adjustment of coils to magnets (after PWR)                                       | Phase Offset              | РНО  | 0-359 / ?                                                  |



Take effect by LINAX®/ELAX® motors only

Take effect by LINAX®/ELAX® motors only

Limitation driveway right

| Force constant of the motor for LINAX $^{\circ}$ /ELAX $^{\circ}$ in [mN/A], torque constant for rotary motors in [ $\mu$ Nm/A]                                                                                                                                                                                                                                                                                                                                                                                             | Force Constant Motor                                      | FCM                  | 0-100'000'000 / ?                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------|
| Resistance phase to phase of the motor in $[m\Omega]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Phase to Phase Resistance                                 | RPH                  | 0-100'000 / ?                                                                                  |
| Inductance phase to phase of the motor in $\left[\mu H\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Phase to Phase Inductance                                 | e LPH                | 0-100'000 / ?                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.6.4 Controller Settings                                |                      |                                                                                                |
| DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Short                                                     | CMD                  | PARAMETER                                                                                      |
| Payload, considered in closed loop [g]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mass Load                                                 | ML                   | 0-100'000 / ?                                                                                  |
| Bandwidth position controller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bandwidth Position                                        | BWP                  | 1-5'000 / ?                                                                                    |
| Bandwidth current controller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bandwidth Current                                         | BWC                  | 5-5'000 / ?                                                                                    |
| Frequency from the Notch Filters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Frequency Filter 1                                        | FQF1                 | 0, 160-2000 / ?                                                                                |
| Bandwidth /Quality from the Notch Filters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bandwidth Filer 1                                         | BWF1                 | 500-100'000 / ?                                                                                |
| Maximum position deviation in encoder increments                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>Deviation Position</b>                                 | DP                   | 1-1'000'000 / ?                                                                                |
| Permissible deviation in target point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Deviation Target Pos.                                     | DTP                  | 1-10'000 / ?                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.6.5 Motion Setting                                     | gs                   |                                                                                                |
| DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Short                                                     | CMD                  | PARAMETER                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                           |                      |                                                                                                |
| Position rated absolute, Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Position                                                  | РО                   | ± 2'000'000'000 / ?                                                                            |
| Position rated absolute, Inc<br>Way relative, encoder increment                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Position<br>Way                                           | PO<br>WA             | ± 2'000'000'000 / ?<br>± 2'000'000'000 / ?                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                           |                      |                                                                                                |
| Way relative, encoder increment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Way                                                       | WA                   | ± 2'000'000'000 / ?                                                                            |
| Way relative, encoder increment<br>Speed Inc/s (encoder counter)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Way<br>Speed                                              | WA<br>SP             | ± 2'000'000'000 / ?<br>10-9'000'000 / ?                                                        |
| Way relative, encoder increment Speed Inc/s (encoder counter) Acceleration Inc/s² (encoder counter) Emergency Deceleration Inc/s² (e.g. for input function EE/EE, for errors, if driving in limit switch or soft limit etc.) If necessary the emergency deceleration can be adjusted during operation if there is an emergency deceleration of >1s                                                                                                                                                                          | Way<br>Speed<br>Acceleration<br>Emergency                 | WA<br>SP<br>AC       | ± 2'000'000'000 / ?<br>10-9'000'000 / ?<br>2'000-1'000'000'000 / ?                             |
| Way relative, encoder increment  Speed Inc/s (encoder counter)  Acceleration Inc/s² (encoder counter)  Emergency Deceleration Inc/s²  (e.g. for input function EE/EE, for errors, if driving in limit switch or soft limit etc.)  If necessary the emergency deceleration can be adjusted during operation if there is an emergency deceleration of >1s  In case of emergency the deceleration is always <1s                                                                                                                | Way<br>Speed<br>Acceleration<br>Emergency<br>Deceleration | WA<br>SP<br>AC<br>ED | ± 2'000'000'000 / ?<br>10-9'000'000 / ?<br>2'000-1'000'000'000 / ?<br>10'000-1'000'000'000 / ? |
| Way relative, encoder increment  Speed Inc/s (encoder counter)  Acceleration Inc/s² (encoder counter)  Emergency Deceleration Inc/s²  (e.g. for input function EE/EE, for errors, if driving in limit switch or soft limit etc.)  If necessary the emergency deceleration can be adjusted during operation if there is an emergency deceleration of >1s  In case of emergency the deceleration is always <1s  Override, scaling from the Acceleration and Speed  Percentage S-Curve rounding. Calculation of jerk parameter | Way Speed Acceleration Emergency Deceleration Override    | WA<br>SP<br>AC<br>ED | ± 2'000'000'000 / ?<br>10-9'000'000 / ?<br>2'000-1'000'000'000 / ?<br>10'000-1'000'000'000 / ? |

Negative

Soft Limit Position Positive **SLPP** 

(Old: LL) stroke >

(old: LR) stroke >

0 - < LINAX®/ELAX®



# 12.6.6 Reference LINAX® / ELAX®

| DESCRIPTION                                                                                                                                                                                                                                                    | Short         | CMD  | PARAMETER |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------|-----------|
| Home linear motor axis encoder                                                                                                                                                                                                                                 | Reference     | REF  |           |
| Start direction REF function  0 = positive, 1 = negative  2 = Gantry REF positive, motors same direction  3 = Gantry REF negative, motors same direction  4 = Gantry REF positive, motors reverse direction  5 = Gantry REF negative, motors reverse direction | Direction REF | DRHR | 0-5 / ?   |

# 12.6.7 Reference Gantry

| DESCRIPTION                                                                                                                                                                                                                                                                                                           | Short                                  | CMD   | PARAMETER        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------|------------------|
| Card Identifier of Gantry Slave set in the Master Control                                                                                                                                                                                                                                                             | Gantry Slave Identifier                | GSID  | 0 - 4            |
| Set CI (query), CANopen Node ID, Powerlink Node ID, Remote ID in Master/Slave Configuration                                                                                                                                                                                                                           | Card Identifier                        | CI    | 1-99 / ?         |
| Home linear motor axis encoder                                                                                                                                                                                                                                                                                        | Reference                              | REF   |                  |
| Start direction REF function  0 = positive, 1 = negative  2 = Gantry REF positive, motors same direction  3 = Gantry REF negative, motors same direction  4 = Gantry REF positive, motors reverse direction  5 = Gantry REF negative, motors reverse direction                                                        | Direction REF                          | DRHR  | 0-5 / ?          |
| Responds the automatically detected Gantry Master Salve<br>Offset. Important: The command <b>DGMSO</b> has to be performed<br>on the Gantry Slave Axis.                                                                                                                                                               | Detected Gantry Master<br>Slave Offset | DGMSO |                  |
| Indication of the Gantry Master Salve Offset. Deviation to the automatically detected value max. 0.5mm, otherwise error 76. 0 = use automatically detected value, can be read with <b>DGMSO</b> . <> 0 = User pre-set Gantry Master Slave Offset Important: The command has to be performed on the Gantry Slave Axis. | Preset Gantry Master<br>Slave Offset   | PGMSO | +- 5′000′000 / ? |

# 12.6.8 Reference Rotary Motors

| DESCRIPTION                                                                           | Short        | CMD | PARAMETER      |
|---------------------------------------------------------------------------------------|--------------|-----|----------------|
| Home function according to program                                                    | Reference    | REF |                |
| Direction of motor rotation to seek external coarse sensor, 1 = CW, 2 = CCW           | Dir Home     | DRH | 1-2            |
| Speed for seeking external sensor<br>If there is no external sensor, then set SPH = 0 | Speed Home   | SPH | 0-25'000 Inc/s |
| Input number for external Home Sensor                                                 | Input Home   | INH | 1-8            |
| Direction of motor rotation for seeking z-mark on encoder, 1 = CW, 2 = CCW            | Dir Z-Mark   | DRZ | 1-2            |
| Speed for seeking z-mark  If there is no z-mark on the encoder, set SPZ = 0           | Speed Z-Mark | SPZ | 0-10'000 Inc/s |



# 12.6.9 Move Commands

| DESCRIPTION                                                                                                                                                                                                                                                                                                              | Short                                                                                                           | CMD                           | PARAMETER                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------|
| Go direct to rated position absolute, Inc                                                                                                                                                                                                                                                                                | Go direct Position                                                                                              | G                             | ± 2'000'000'000                                                                                      |
| Go to position absolute                                                                                                                                                                                                                                                                                                  | Go Position                                                                                                     | GP                            | (Position = PO value)                                                                                |
| Go way relative                                                                                                                                                                                                                                                                                                          | Go Way                                                                                                          | GW                            | (Way = WA value)                                                                                     |
| Go to zero-mark on encoder disk                                                                                                                                                                                                                                                                                          | Go Z-Mark                                                                                                       | GZ                            |                                                                                                      |
| Jog (run) positive, v = constant                                                                                                                                                                                                                                                                                         | Jog Positive                                                                                                    | JP                            | (Speed = SP value)                                                                                   |
| Jog (run) negative, v = constant                                                                                                                                                                                                                                                                                         | Jog Negative                                                                                                    | JN                            | (Speed = SP value)                                                                                   |
| Repeat way(WA value) positive/negative                                                                                                                                                                                                                                                                                   | Repeat Reverse                                                                                                  | RR¹)                          | 1-100'000                                                                                            |
| Repeat way (WA value) constant direction                                                                                                                                                                                                                                                                                 | Repeat Way                                                                                                      | RW¹)                          | 1-100'000                                                                                            |
| Waiting time on command RR and RW                                                                                                                                                                                                                                                                                        | Wait Repeat                                                                                                     | WT¹)                          | 1-10'000 (ms)                                                                                        |
| Run index number                                                                                                                                                                                                                                                                                                         | Index                                                                                                           | IX                            | 1-50                                                                                                 |
| Run profile                                                                                                                                                                                                                                                                                                              | Profile                                                                                                         | PRF                           | 1-5                                                                                                  |
| Move DRIVE I_FORCE Nr. xx                                                                                                                                                                                                                                                                                                | Drive I Force                                                                                                   | DIF                           | XX                                                                                                   |
| Stop program and motion with deceleration                                                                                                                                                                                                                                                                                | Stop Motion                                                                                                     | SM                            |                                                                                                      |
| Stop program and motion with deceleration                                                                                                                                                                                                                                                                                |                                                                                                                 |                               | I_Force (programmed                                                                                  |
|                                                                                                                                                                                                                                                                                                                          | 12.6.10 Index / Move<br>movements)                                                                              | es with                       | _ " -                                                                                                |
| DESCRIPTION                                                                                                                                                                                                                                                                                                              | 12.6.10 Index / Move                                                                                            |                               | I_Force (programmed PARAMETER                                                                        |
|                                                                                                                                                                                                                                                                                                                          | 12.6.10 Index / Move<br>movements)                                                                              | es with                       | - " -                                                                                                |
| DESCRIPTION                                                                                                                                                                                                                                                                                                              | 12.6.10 Index / Move<br>movements)<br>Short                                                                     | es with                       | PARAMETER                                                                                            |
| DESCRIPTION  Run index number  Number of index pre-load for changing index parameters by                                                                                                                                                                                                                                 | 12.6.10 Index / Move<br>movements)  Short                                                                       | es with  CMD                  | PARAMETER 1-50                                                                                       |
| Run index number  Number of index pre-load for changing index parameters by remote control                                                                                                                                                                                                                               | 12.6.10 Index / Move<br>movements)  Short  Index Number Index                                                   | CMD IX NIX                    | PARAMETER  1-50 1-50                                                                                 |
| Run index number  Number of index pre-load for changing index parameters by remote control  Acceleration write in Index at the NIX preloaded number                                                                                                                                                                      | 12.6.10 Index / Move<br>movements)  Short  Index Number Index Accel. Index                                      | CMD IX NIX AIX                | PARAMETER  1-50 1-50 2-1'000'000 (x1000) Inc/s                                                       |
| Run index number  Number of index pre-load for changing index parameters by remote control  Acceleration write in Index at the NIX preloaded number  Speed write in Index at the NIX preloaded number                                                                                                                    | 12.6.10 Index / Move<br>movements)  Short  Index Number Index Accel. Index Speed Index                          | CMD  IX NIX AIX SIX           | PARAMETER  1-50 1-50 2-1'000'000 (x1000) Inc/s 10-1'000'000 Inc/s                                    |
| Run index number  Number of index pre-load for changing index parameters by remote control  Acceleration write in Index at the NIX preloaded number  Speed write in Index at the NIX preloaded number  Distance write in Index at the NIX preloaded number                                                               | 12.6.10 Index / Move movements)  Short  Index Number Index  Accel. Index Speed Index Distance Index             | CMD  IX NIX AIX SIX DIX       | 1-50<br>1-50<br>1-50<br>2-1'000'000 (x1000) Inc/s<br>10-1'000'000 Inc/s<br>± 2'000'000'000 Increment |
| Run index number  Number of index pre-load for changing index parameters by remote control  Acceleration write in Index at the NIX preloaded number  Speed write in Index at the NIX preloaded number  Distance write in Index at the NIX preloaded number  Save index type in index for the preselected number with NIX | 12.6.10 Index / Movemovements)  Short  Index Number Index Accel. Index Speed Index Distance Index Type of Index | CMD  IX NIX  AIX SIX DIX TYIX | PARAMETER  1-50 1-50 2-1'000'000 (x1000) Inc/s 10-1'000'000 Inc/s ± 2'000'000'000 Increment 1,2 / ?  |

Drive I\_Force

Drive I\_Force

I\_Force

I\_Force

Speed for Drive I\_Force

Direction Drive I\_Force

xx = 0 ->positive, xx = 1 -> negative

Limitation of I-Force current while Drive I\_Force

xx [inc/s]

xx [x10mA]

Speed of selected Drive

Direction of selected Drive **DDIF** 

SDIF

XX

XX



# 12.6.11 Program / Application

| DESCRIPTION                                                                                                                                                                                                                                                | Short                   | CMD  | PARAMETER                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------|---------------------------|
| Run program number                                                                                                                                                                                                                                         | Program                 | PG   | 1-15                      |
| 0 = Program 115 max. 50 program lines, Program 1663 max. 10 program lines 1 = Program 15 max. 130 program lines, Program 663 max 10 program lines Important: Changes of PMAP parameter clears entire program memory                                        | Program Mapping         | PMAP | 0,1 / ?                   |
| Save Application (incl. parameters) to Start-up Key                                                                                                                                                                                                        | Save to Start-up Key    | SVST |                           |
|                                                                                                                                                                                                                                                            | 12.6.12 Event           |      |                           |
| DESCRIPTION                                                                                                                                                                                                                                                | Short                   | CMD  | PARAMETER                 |
| Event activation                                                                                                                                                                                                                                           | Event Status or Input   | EVT  | 0,1                       |
| 0=All input events enabled 1C= Event of input 112 enabled                                                                                                                                                                                                  | Event Track Input       | ETI  | 0-9, A-C                  |
| 0= All input events disabled<br>01C = Event of input 112 disabled                                                                                                                                                                                          | Disable Track Input     | DTI  | 0-9, A-C                  |
|                                                                                                                                                                                                                                                            | 12.6.13 Input / Outp    | ut   |                           |
| DESCRIPTION                                                                                                                                                                                                                                                | Short                   | CMD  | PARAMETER                 |
| Set type of PLC outputs (Source, Sink, Source/Sink) -> refer chapter Output configuration                                                                                                                                                                  | Set Output Type         | SOT  | 0-65535                   |
| High / Low Activity of PLC outputs -> refer chapter <i>Output configuration</i>                                                                                                                                                                            | Set Output Activity     | SOA  | 0-255                     |
| Set PLC output to logic 1 (level according SOT, SOA)                                                                                                                                                                                                       | Set Output              | so   | 1-8                       |
| Equivalent to SO, but set all outputs binary coded<br>Bit 0 = Output 1, Bit 7 = Output 8                                                                                                                                                                   | Set Output Hex          | sox  | 00-FF                     |
| Clear output (level according SOT, SOA)                                                                                                                                                                                                                    | Clear Output            | СО   | 1-8                       |
| Trigger upward counting, absolute, at output #x defined in Output-Function, pulse during 5ms                                                                                                                                                               | Trigger upward          | TGU  | ± 2'000'000'000 Increment |
| Trigger downward counting, absolute, at output #x defined in Output-Function, pulse during 5ms                                                                                                                                                             | Trigger downward        | TGD  | ± 2'000'000'000 Increment |
| 0=all Input HIGH active, 1= all Input LOW active,<br>2= individual input activity selection according to ILAS (value 0<br>and 1 puts ILAS to 0x000 respectively 0xFFF)                                                                                     | Input LOW active        | ILA  | 0-2 / ?                   |
| individual input activity selection, 0=Input HIGH active,<br>1=Input LOW active<br>1. Hex for value binary inputs 9-12 only 0 or F, 2. And 3. Hex<br>value for input 1-8 (values 0x000 and 0xFFF put ILA to 0 resp. 1.<br>All other values are to 2 by ILA | Input Low Active Single | ILAS | 0xx / Fxx / ?             |
| Status all 12 inputs, 0 = Low, 1 = High /? incl. indication of input number                                                                                                                                                                                | Tell Input              | TI   | /?                        |
| Status single input, 0 = Low 1 = High                                                                                                                                                                                                                      | Tell Input              | TI   | 1-12                      |
| Status all 12 Inputs in HEX format                                                                                                                                                                                                                         | Tell Input HEX          | TIX  |                           |
| Status all 8 Outputs,<br>0= logic 0, 1=logic 1                                                                                                                                                                                                             | Tell Output             | то   |                           |



Status all 8 Outputs in HEX format Tell Output HEX TOX Shows present position captured with input **Tell Capture Position** TCP 1-8 Shows the position captured with input 12 Tell Capture Pos. Buffer ТСРВ 1-8 Set all 8 capture Position Register to 0 Clear Capture Position CLCP 1-8 (all) CP12 Activate capture position function over input 12 Capture Pos. Input 12 0,1

Break Delay in [ms] Attention: no works with the SMU module

Break Delay BRKD 1-1000 (ms) / ?

# 12.6.14 Limit Position ELAX®

| DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Short                                          | CMD   | PARAMETER                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------|--------------------------------------------------------------------------|
| Start calibration of the <b>internal</b> mechanical limit stop positive. After the calibration the value can be read with <i>DMLPP</i> .                                                                                                                                                                                                                                                                                                                              | Mechanical Limit Calibration                   | MLC   |                                                                          |
| Position of the detected <b>internal</b> mechanical limit position positive ? = Returns the position of the detected internal mechanical limit stop positive. 0 = Deletes the position of the detected internal mechanical limit                                                                                                                                                                                                                                      | Detected Mechanical Limit<br>Position Positive | DMLPP | 0, <stroke elax=""> - <stroke<br>ELAX + 3mm&gt; / ?</stroke<br></stroke> |
| stop positive  Note:  - If DMLPP is deleted (DMLPP = 0), the value for the internal mechanical limit stop for the reference in positive direction is <stroke +="" 1mm="" elax="">  - If the value for the internal mechanical limit stop positive is known, this value can be set without calibration (without command MLC).</stroke>                                                                                                                                 |                                                |       |                                                                          |
| Position of the detected <b>external</b> mechanical limit stop position negative.  ? = Returns the position of the detected external mechanical limit stop negative.  0 = Deletes the position of the detected external mechanical limit stop negative.  Note:                                                                                                                                                                                                        | Mechanical Limit Position<br>Negative          | MLPN  | <-3mm> - <stroke +="" 3mm="" elax=""> / ?</stroke>                       |
| - If MLPN is deleted (MLPN = 0), the value for the internal mechanical limit stop itself is used for the reference in negative direction, which is <-1mm> as per definition.  - The position of an externally mounted mechanical limit has to be accurate. If the entered position of the externally mounted limit stop is wrong, the alignment of the coils to the magnets cannot be completed and the motor won't be capable to drive                               |                                                |       |                                                                          |
| Position of the detected <b>external</b> mechanical limit stop position positive.  ? = Returns the position of the detected external mechanical limit stop negative.  0 = Deletes the position of the detected external mechanical limit stop negative.  Note:                                                                                                                                                                                                        | Mechanical Limit Position<br>Positive          | MLPP  | <-3mm> - <stroke +="" 3mm="" elax=""> / ?</stroke>                       |
| <ul> <li>If MLPN is deleted (MLPN = 0), the value for the internal mechanical limit stop itself is used for the reference in negative direction, which is &lt;-1mm&gt; as per definition.</li> <li>The position of an externally mounted mechanical limit has to be accurate. If the entered position of the externally mounted limit stop is wrong, the alignment of the coils to the magnets cannot be completed and the motor won't be capable to drive</li> </ul> |                                                |       |                                                                          |



# 12.6.15 Force Control

| DESCRIPTION                                                                                                                                                                                                                                                                                                                             | Short                             | CMD  | PARAMETER                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------|--------------------------------|
| Force Calibration is being started with adjustable driving distance for the scanning process.  Value from 1 to 10'000'000 = Distance in Inc. Of scanning process.  ?= Requesting if of scanning values are still available  0 = Delete Force Calibration scanning values  Command "FC?"                                                 | Force Calibration                 | FC   | 0-< stroke LINAX®/ELAX®<br>/ ? |
| 1 = Force Calibration Values available 0 = No Force Calibration Values available                                                                                                                                                                                                                                                        |                                   |      |                                |
| Important:                                                                                                                                                                                                                                                                                                                              |                                   |      |                                |
| Force Calibration scan drive will begin at current position  Test function to check Force Calibration effect through manual movement of the carriage slider.  2 = Test Force Calibration On (without active compensation)  1 = Test Force Calibration (with active compensation)  0 = Test Force Calibration off (Servo holds position) | Force Calibration Test            | FCT  | 0,1,2 /?                       |
| Request Status of Force Calibration:<br>0 = No Force Calibration scan values available<br>1=Force Calibration scan values available                                                                                                                                                                                                     | Force Calibration Valid           | FCV  | xx / ?                         |
| Maximal approved force-proportional current [x10mA]  0 = Deactivated  → As soon as the max. approved current has been hit, error  "30" is being activated and can be retrieved over Process Status  registry  Bit 15 "I_FORCE_ LIMIT_REACHED" with command TPSR  (Refer to chapter 11.7.1 "Force Limitation")                           | Limit I_Force                     | LIF  | 0 – 1′800 / ?                  |
| Change Limit DR_I_FORCE to xx x 10mA value xx will overwrite the current parameter DR_I_Force, until  DRIVE I_FORCE END                                                                                                                                                                                                                 | Change Limit I Force              | CLIF | xx                             |
| Driving with limited force until reaching an object or the end position if there is no object.  xx= [1-10] No. of the selected Drive I_Force parameter set                                                                                                                                                                              | Drive I_Force                     | DIF  | xx                             |
| Force-proportional, actual current-value filtered [mA]<br>(Refer to chapter 11.7.2 "Force Monitoring")                                                                                                                                                                                                                                  | l Force Actual                    | IFA  |                                |
| Actual motor current [mA]                                                                                                                                                                                                                                                                                                               | Tell motor current                | TMC  |                                |
| Select sectors which should be active. E.g. xx = 100110-> active are the sectors 2,3,6 Binary from right side LSB (binary notation, LSB = sector 1)                                                                                                                                                                                     | Select Sectors                    | SSEC | xx / ?                         |
| Reads I_FORCE peak value [x1mA]<br>xx=not defined-> Max peak value over all sectors<br>xx=n-> peak value of sector n                                                                                                                                                                                                                    | l Force Peak                      | IFPK | xx                             |
| shows the active sectors which force curve did not correctly pass through  E.g. xx = 1001->Error in sector 1 and 4.  (binary notation, LSB = sector 1)                                                                                                                                                                                  | Sector I_Force Curve<br>Failed    | SIFF | xx / ?                         |
| Is taking current actual position as an offset for all sectors with restart of monitoring.  Furthermore the positions "Wait for distance greater/less" and "Jump if distance greater/less" are adjusted by this offset.                                                                                                                 | Take Position as Sector<br>Offset | TPSO |                                |

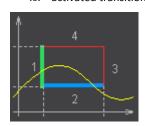
xx / ?

SSO

**STCX** 

xx / ?

# J E N N Y S C I E N C E


Provide offset for all sectors with restart of monitoring.

xx = [Inc] offsetFurthermore the positions "Wait for distance greater/less" and "Jump if distance greater/less" are adjusted by this offset xx. E.g. xx = 0, sets offset to 0 Selecting sector number for which parameters shall be Number of Sector for NSEC xx / ? changed. xx = [1-10] Sector number, NSEC? = Retrieving the change parameter selected sector number. Selecting sector number for which parameters shall be Sector I Force Start SIFS xx/?changed. xx = [1-10] Sector number, NSEC? = Retrieving the selected sector number. Selecting sector number for which parameters shall be Sector I Force End SIFE xx/?changed. xx = [1-10] Sector number, NSEC? = Retrieving the selected sector number. Lowest value I\_Force in pre-selected sector. xx [x10mA] I Force High IFH xx / ? Lowest value I\_Force in pre-selected sector. xx [x10mA] I Force Low IFL xx/?Definition of transitions Entry and Exit in sector **Sector Transition** STC xx / ? xx = activated transition 1,2,3,4 Entry/Exit **Configuration Decimal** 

Set Sector Offset

**Sector Transition** 

Configuration Hexadecimal



| Bit 1512       | 118      | 74   | 30       | xx          |
|----------------|----------|------|----------|-------------|
| Entry          | not used | Exit | not used |             |
| 4 3 2 <b>1</b> | 0        | 4321 | 0        | Transition. |
| 0001           | 0000     | 0010 | 0000     | bin         |
| 1              | 0        | 2    | 0        | hex         |
|                |          | •    | 4128     | dec         |

|        |               |                                                | <u> </u>                                                                                                                                        |
|--------|---------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| xx / ? | NDIF          | Number of Drive I_Force<br>to change parameter | Selecting Drive I_Force number in which parameters shall be changed.  xx= Drive I_Force number 1-10. NDIF? =  Retrieving selected sector number |
| xx / ? | ADIF          | Acceleration of selected<br>Drive I_Force      | Acceleration for Drive I_Force xx [x1'000 inc/s <sup>2</sup> ]                                                                                  |
| xx / ? | SDIF          | Speed of selected Drive I_Force                | Speed for Drive I_Force<br>xx [inc/s]                                                                                                           |
| xx / ? | IDIF          | I_Force Limit of selected Drive I_Force        | Limitation of I-Force current while Drive I_Force xx [x10mA]                                                                                    |
| xx / ? | e <b>DDIF</b> | Direction of selected Drive I_Force            | Direction Drive I_Force<br>xx = 0 ->positive, xx =1 -> negative                                                                                 |
|        |               |                                                |                                                                                                                                                 |



|                                                                                                                                                                | 12.6.16 Correction Table            |             |                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------|---------------------|
| DESCRIPTION                                                                                                                                                    | Short                               | CMD         | PARAMETER           |
| Status of correction table:  0= correction table deactivated  1= correction table activated  2= correction table initialized (physical values = Encoder value) | Correction Table State              | СТАВ        | 0-2 / ?             |
| Starting position of the correction table in [inc]                                                                                                             | Correction Table Position Start     | CTPS        | 0-500'000'000 / ?   |
| Distance between the entries in the correction table in [inc]                                                                                                  | Correction Table Distance Points    | CTDP        | 10-30'000'000 / ?   |
| Preselect absolute encoder position in correction table in [inc]                                                                                               | Correction Table Preselect Position | СТРО        | 0-2'000'000'000 / ? |
| Physical position deviation for preselected encoder position in correction table in [inc]                                                                      | Correction Table Value              | CTVA        | -30'000-30'000 / ?  |
|                                                                                                                                                                | 12.6.17 System Information          |             |                     |
| DESCRIPTION                                                                                                                                                    | Short                               | CMD         | PARAMETER           |
| Present position ± 2*10E9                                                                                                                                      | Tell Position                       | TP          |                     |
| Require actual motor velocity [inc/s]                                                                                                                          | Tell Velocity                       | TV          |                     |
|                                                                                                                                                                |                                     | TT          |                     |
| Motor temperature in degree Celsius                                                                                                                            | Tell Temperature                    |             |                     |
| Status: 0 = Power OFF, 1 = Power ON,<br>2 = In motion, 9 = Error                                                                                               | Tell Status                         | TS<br>Nowen | accounce TDCP       |
| ·                                                                                                                                                              | = U.S                               |             | ease use TPSR       |
| Binary coded process status, size of return string 3 Bytes in HEX                                                                                              | Tell Process Status                 | TPSR        |                     |
| format<br>ERROR = BIT 0                                                                                                                                        | Register                            |             |                     |
| HOME = BIT 1                                                                                                                                                   |                                     |             |                     |
| IN_MOTION = BIT 2                                                                                                                                              |                                     |             |                     |
| IN POSITION = BIT 3                                                                                                                                            |                                     |             |                     |
| END_OF_PROGRAM = BIT 4                                                                                                                                         |                                     |             |                     |
| IN_FORCE = BIT 5                                                                                                                                               |                                     |             |                     |
| IN_SECTOR = BIT 6                                                                                                                                              |                                     |             |                     |
| FORCE_IN_SECTOR = BIT 7                                                                                                                                        |                                     |             |                     |
| INVERTER_VOLTAGE = BIT 8                                                                                                                                       |                                     |             |                     |
| END_OF_GANTRY_INIT = BIT 9                                                                                                                                     |                                     |             |                     |
| LIMIT_SWITCH_LEFT = BIT 10                                                                                                                                     |                                     |             |                     |
| LIMIT_SWITCH_RIGHT = BIT 11                                                                                                                                    |                                     |             |                     |
| EMERGENCY_EXIT_1, REMAIN POWER ON = BIT 12<br>(Function can only be used <b>without</b> bus module.                                                            |                                     |             |                     |
| With bus module, apply function "EMERGENCY_EXIT").                                                                                                             |                                     |             |                     |
| EMERGENCY EXIT, POWER OFF= BIT 13                                                                                                                              |                                     |             |                     |
| COGGING_REFERENCE_DRIVE_ACTIVE = BIT 14                                                                                                                        |                                     |             |                     |
| I_FORCE_LIMIT_REACHED = BIT 15                                                                                                                                 |                                     |             |                     |
| STO PRIMED/HIT = BIT 16                                                                                                                                        |                                     |             |                     |
| SS1 PRIMED/HIT = BIT 17                                                                                                                                        |                                     |             |                     |
| SS2 PRIMED = BIT 18                                                                                                                                            |                                     |             |                     |
| CC2 LIT - DIT 10                                                                                                                                               |                                     |             |                     |

SS2 HIT = BIT 19
SLS PRIMED = BIT 20
SLS SPEED HIT = BIT 21
SLS POSITION HIT = BIT 22
WARNING = Bit 23
INFORMATION = Bit 24
Actual motor current

Tell motor current

TMC

(mA)



| Motion time [milliseconds] of the last profile drive                                             | Tell Motion Time       | TMT                 |
|--------------------------------------------------------------------------------------------------|------------------------|---------------------|
| Read process timer [milliseconds] refer also program functions TIMER_START, TIMER_STOP           | Tell Process Time      | TPT                 |
| Version number of installed firmware                                                             | Version                | VER                 |
| Version number of installed SMU firmware                                                         | Version SMU            | VERS                |
| Versions number of the installed bus module firmware                                             | Version Bus Module     | VERB                |
| Versions queries of the boot loader (from version V4.00)                                         | Version Boot Loader    | VERL                |
| MAC address query of PROFINET / Powerlink / EtherNet/IP bus module                               | MAC address Bus Module | MACB                |
| Shows CANopen control- and status word an. <b>Important</b> command only provided in WebMotion®. |                        | DS402               |
| Temperature control, instantaneous value integration                                             | I2T                    | 12T1)               |
| Temperature control, maximum value integration painter                                           | I2TM                   | I2TM <sup>1</sup> ) |

# 12.6.18 Bus Module Information

| DESCRIPTION                                                                                                                  | Short                                    | CMD   | PARAMETER             |
|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------|-----------------------|
| Baud rate of the optional CANopen interface                                                                                  | CAN Baud rate                            | САВ   | 1'000 - 1'000'000 / ? |
| Set cycle time [microseconds] in Cyclic Synchronous Position<br>Mode (DS402). Used RMR for interpolation                     | PDO Cycle Time                           | PCT   | 100-10'000 /?         |
| Versions number of the installed bus module firmware                                                                         | Version bus module                       | VERB  |                       |
| IP address queries EtherNet/IP modules (from version V4.00)                                                                  | IP Address bus module                    | EIPB  |                       |
| Reset bus module                                                                                                             | Reset bus module                         | RESB  |                       |
| MAC address query of PROFINET / Powerlink / EtherNet/IP bus module                                                           | MAC address bus module                   | MACB  |                       |
| Re-adjust Bit "P402 Set Point Acknowledge" to behavior.<br>equal or smaller than firmware V3.68H                             | Set Point ACK disable                    | SPAD  | 0 - 1                 |
|                                                                                                                              | 12.6.19 Error Handling                   |       |                       |
| DESCRIPTION                                                                                                                  | Short                                    | CMD   | PARAMETER             |
| Error number 01-99                                                                                                           | Tell Error                               | TE    |                       |
| Error number description string                                                                                              | Tell Error String                        | TES   |                       |
| Retrieving error buffer (last 8 appearing info's, warnings or errors)                                                        | Tell Error Buffer                        | TEB   |                       |
| Description of the error from the SMU                                                                                        | Tell Error SMU                           | TESM  |                       |
|                                                                                                                              | 12.6.20 System Monitoring                |       |                       |
| DESCRIPTION                                                                                                                  | Short                                    | CMD   | PARAMETER             |
| Switching off or turning on the encoder plausibility test:  0=Encoder plausibility test on  1= Encoder plausibility test off | Encoder Plausibility<br>Checking Disable | ENCPD | 0-1/?                 |

Watchdog

WD

0-60'000 ms / ?

(for rotary motors only, XENAX® HW >= 4.0)
Watchdog for RS232/Ethernet interface

1-60'000 = Watchdog time in [ms]. If output stage is on and no ASCII command was received over RS232 or Ethernet for <WD> ms, output stage is turned off and error code 77 is shown.

0 = deactivated



# 12.7 Move Axis by Force

The Force Calibration function compensates the magnetic cogging forces, the load force and the friction forces of the LINAX®/ELAX® iron-core linear motors from Jenny Science.

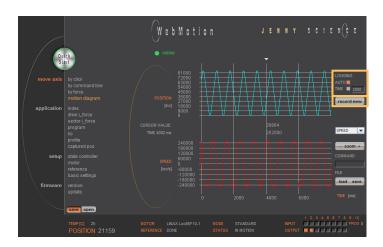
Refer to chapter "15 Force Processes"



### 12.8 Move Axis Motion Diagram

Recording position and acceleration.

#### **LOGGING AUTO**


Recording starts, as soon as the drive has started. The record lasts until the drive and a possible program have ended.

# **LOGGING TIME**

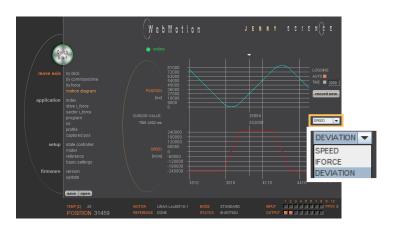
Recording starts, as soon as the drive has started. The record lasts as long as the time indicated (2-8000ms).

# record new

Initialization for new recording sequence. Wait for message "ready for recording next motion". Start motion in command panel (move axis / by click or by command line) e.g. G44000.



#### **SPEED**


Records speed in increments in relation to the position.

#### **IFORCE**

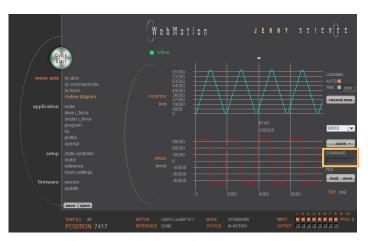
Records current in milliampere in relation to the position.

#### **DEVIATION**

Records position deviation in increments.



#### zoom + / zoom -


Zoom of curve section on time axis.
The middle of the zoom-range can be set with the arrow button on the top. Press key "zoom +" to draw the curve section.

Press key "zoom –" for undo zoom action. The zoom function also works over the mouse wheel.



#### Command

Enter command e.g. starting position of the motor, REF, G0, drive on a position or repeat reverse (RR).



#### load file

Shows a motion profile which was saved on the computer. The upload has no influence on the parameters of the servo controller.

#### save file

Saves the motion profile on the computer.



#### 12.9 Index

An Index is a motion profile and contains acceleration (ACCEL), speed (SPEED), distance (DISTANCE) and TYPE of distance (absolute (ABS), with reference to the zero position or relative (REL) with reference to the present position).

The values always refer to increments of the incremental encoder. The INDICES simplify programming and reduce the communication time by serial control. Execute with IXxx<CR>.

A maximum of 50 INDEXES can be predefined.

#### **EDIT**

NEW INDEX = Create new index CLEAR INDEX = Clear index number

#### **CURRENT INDEX**

A list containing all already defined indices.

#### **PARAMETERS**

Setting of the parameters "CURRENT INDEX"

ACCx1000 Acceleration (2-1'000'000'000 x 1'000 Inc/s2)

SPEED Speed (10-100'000'000 Inc/s)

DISTANCE Distance in Inc

TYPE ABS= Absolut (Position), REL=Relative (WEG)

Teach Pos Current position is set in the field "DISTANCE"

# 12.10 Drive I\_Force

In the menu "Diag I\_Force" the way/force diagram can be recorded by which the force progression through the sectors can be verified.

Refer more Information in chapter "15 Force Processes"





# 12.11 Sector I\_Force

In the WebMotion® program menu "sector I-force" up to 10 different force sectors can be defined.

#### Example:

Once an object is touched the force progression shall be examined in a sector of 150 to 170 Increments. When entering the force sector ("ENTRY") the force should be between 3 and 4N. When exiting the sector ("EXIT"), the force should have reached 4N. These force specifications are defined with the in the force sector incoming and exiting sector boundaries.

Refer more Information in chapter "15 Force Processes"



# 12.12 Program



Please also consult the TUTORIAL Video
JSC Tutorial 5: Programming of a Pick and Place
System with XENAX® Master-Slave on our website, in
which you can follow a practical example.

Here you can define program sequences line by line.

#### **PROGRAM**

Select, create, copy or delete a program.

#### **LINES**

In this list all defined program lines of the present program will be shown. The arrows at the top and below serve for scrolling within the window. Is a line in the list selected then it can be moved with MOVE arrow.

Maximum number of lines depends on program mapping (PMAP, default = 0):

PMAP = 0 Prog 1-15: 50 lines Prog 16-63: 10 lines PMAP = 1 Prog 1-5: 130 lines Prog 6-63: 10 lines

#### **EDIT LINE**

This is where program lines can be edited.

SET = sets the edited line in the LINES list.

INSERT = Edited lines can be inserted at any position by selecting the according location in the LINES content.

CLEAR = lines can be deleted by selecting the according line in the list.



# 12.12.1 Program commands

| Reference for LINAX®/ELAX® and rotary motors                              | REFERENCE                         |              | MS   |
|---------------------------------------------------------------------------|-----------------------------------|--------------|------|
| Execute index number xx or change according operation yy with distance zz | INDEX                             | xx, yy, zz   | MS   |
| Set Output number xx                                                      | SET OUTPUT                        | xx           | MS   |
| Clear Output number xx                                                    | CLEAR OUTPUT                      | XX           | MS   |
| Go to Line number xx                                                      | GOTO LINE                         | xx           |      |
| Go to line number xx, if input number yy active                           | GOTO LINE IF INPUT                | хх, уу       |      |
| Set Loop Counter # to xxxx (1-10000)                                      | SET LOOP COUNTER (A-E)            | XXXX         |      |
| Decrement Loop Counter #, if not zero, jump line xx.                      | DEC LOOP COUNT (A-E) JNZ LINE     | XX           |      |
| Loop counters can be interleaved with each other                          | 220 2001 000111 (71 27 3112 21112 | AA.          |      |
| Wait xx ms                                                                | WAIT TIME (ms)                    | xx           |      |
| Wait for logical High of Input number xx within timeout                   | WAIT INPUT NT HIGH                | XX           | MS   |
| frame yy, otherwise jump to line zz "error handling"                      | W/ III IIII                       | 707          |      |
| (timeout can only be used locally, not for (remote)                       |                                   |              |      |
| Wait to logical Low of Input number xx within timeout                     | WAIT INPUT NT LOW                 | xx           | MS   |
| frame yy, otherwise jump to line zz "error handling"                      | WAIT IN OT IN LOW                 | XX           | 1415 |
| (timeout can only be used locally, not for remote)                        |                                   |              |      |
| Set position counter to 0, not possible                                   | CLEAR POSITION                    |              |      |
| with LINAX®/ELAX® linear motor axis                                       | CLEARTOSITION                     |              |      |
| Execute Profile number xx                                                 | PROFILE                           | XX           | MS   |
| Start process timer                                                       | TIMER START                       | ^^           | IVIS |
| Stop process timer                                                        | TIMER STOP                        |              |      |
| Command TPT (Tell Process Timer) returns measured time                    | THE STOP                          |              |      |
| in milliseconds                                                           |                                   |              |      |
| LINAX®/ELAX® drives to mechanical limited position,                       | REF LIMIT STOP                    |              |      |
| refer setup / reference.                                                  | KEI EIMII STOF                    |              |      |
| Executing Force Calibration, Start Pos xx, End Pos yy                     | FORCE CALIBRATION                 | VV 1/1/      |      |
| Execute DRIVE I_FORCE No. xx                                              | DRIVE I_FORCE                     | xx, yy<br>xx |      |
| Selection of active sectors with Bit mask.                                | SELECT SECTORS                    | XX           |      |
| E.g. $xx = 1010 \rightarrow sectors 2$ and 4 are active. LSB is on right. | SELECT SECTORS                    | **           |      |
| Wait until Limit I_FORCE is reached according parameter                   | WAIT LIMIT I_FORCE                | xx, yy       |      |
| DRIVE I FORCE within timeout xx, otherwise jump to line                   | WATT ENVITTI_T ONCE               | ^^, y y      |      |
| yy "error handling"                                                       |                                   |              |      |
| Wait for distance (absolute position – Sector Offset) to be               | WAIT FOR DISTANCE GREATER         | VV 101 77    |      |
| greater than xx within timeout frame yy, otherwise jump                   | WAIT FOR DISTANCE GREATER         | xx, yy, zz   |      |
| to line zz "error handling"                                               |                                   |              |      |
| Wait for distance (absolute position – Sector Offset) to be               | WAIT FOR DISTANCE LESS            | VV VV 77     |      |
| smaller than xx within timeout frame yy, otherwise jump                   | WAIT FOR DISTANCE LESS            | xx, yy, zz   |      |
| to line zz "error handling"                                               |                                   |              |      |
| Wait for process status register Bit xx High within timeout               | WAIT PROCESS STATUS BIT HIGH      | VV 1/1/ 77   |      |
| frame yy, otherwise jump to line zz "error handling"                      | WAIT FROCESS STATOS BIT HIGH      | xx, yy, zz   |      |
| Wait for process status register Bit xx Low within timeout                | WAIT PROCESS STATUS BIT LOW       | XX, YY, ZZ   |      |
| frame yy, otherwise jump to line zz "error handling"                      | WAIT FROCESS STATOS BIT LOW       | ^^, yy, 22   |      |
| Is taking the actual position as offset value for all sectors             | TAKE DOS AS SECTOR OFFSET         |              |      |
| followed by the restart of monitoring.                                    | TAKE POS AS SECTOR OFFSET         |              |      |
| Furthermore the positions "Wait for distance                              |                                   |              |      |
|                                                                           |                                   |              |      |
| greater/less" and "Jump if distance greater/less" are                     |                                   |              |      |

being adjusted by the offset as well.



explained in the document "XENAX® Xvi Force

Processes".

| Setting offsets for all sectors followed by the restart of monitoring.  xx = [Inc] Offset                 | SET SECTOR OFFSET             | xx     |      |
|-----------------------------------------------------------------------------------------------------------|-------------------------------|--------|------|
| Furthermore the positions "Wait for distance                                                              |                               |        |      |
| greater/less" and "Jump if distance greater/less" are                                                     |                               |        |      |
| being adjusted by the offset xx as well.                                                                  |                               |        |      |
| e.g. xx = 0, sets offset                                                                                  |                               |        |      |
| incl. TAKE POS AS SECTOR OFFSET to 0                                                                      | CHANCE HAUT L FORCE           |        |      |
| Changing Limit DR_I_FORCE to xx x 10mA                                                                    | CHANGE LIMIT I_FORCE          | XX     |      |
| Value of I_FORCE will overwrite the current parameter<br>I_Force in DRIVE I_FORCE until DRIVE I_FORCE END |                               |        |      |
| Jump to line zz if distance xx (absolute position – sector                                                | JUMP IF DISTANCE GREATER      | XX, ZZ |      |
| offset) greater than xx                                                                                   | JOINT II DISTANCE GREATER     | XX, ZZ |      |
| e.g. driving distance was too big after force was reached                                                 |                               |        |      |
| Jump to line zz if distance (absolute position – sector                                                   | JUMP IF DISTANCE LESS         | XX, ZZ |      |
| offset) smaller than xx                                                                                   |                               | •      |      |
| e.g. driving distance was too small after force was                                                       |                               |        |      |
| reached                                                                                                   |                               |        |      |
| Jump to line xx "error handling" if one or more sectors are                                               | JUMP IF I_FORCE SECTORS FAULT | XX     |      |
| not passed correctly. Only active sectors are being tested.                                               |                               |        |      |
| Caution: Before this analysis can be done, "DRIVE                                                         |                               |        |      |
| I_FORCE END" has to be completed.                                                                         | DRIVE L FORCE END             |        |      |
| Stop Drive I_Force, current position = set point position,<br>parameter LIMIT DR_I_FORCE inactive         | DRIVE I_FORCE END             |        |      |
| Power stage without power, the linear motor is movable                                                    | POWER QUIT                    |        | MS   |
| by hand.                                                                                                  | TOWER GOTT                    |        | 1413 |
| Power continues (>PWC)                                                                                    | POWER CONTINUE                |        | MS   |
| Turning on the power stage with taking over the most                                                      |                               |        |      |
| recent absolute position and without the need of                                                          |                               |        |      |
| referencing the linear motor, e.g. after error 50 or after                                                |                               |        |      |
| "Power Quit". This is only possible as long as the logic                                                  |                               |        |      |
| supply has not been interrupted after the linear motor                                                    |                               |        |      |
| was referenced.                                                                                           |                               |        |      |
| Program is being ended and does not proceed to last line.                                                 | PROGRAM END                   |        |      |
| Beneficiary for "error handling"                                                                          |                               |        |      |
| Please note:                                                                                              |                               |        |      |
| All entries in menu <i>program</i> must be downloaded in                                                  |                               |        |      |
| menu loading / application / Download Appl to take                                                        |                               |        |      |
| effect on servo controller.                                                                               |                               |        |      |
|                                                                                                           |                               |        |      |
| MS: Master/Slave function can be started on another controller.                                           |                               |        |      |
| controller.  LOC = Local, ID14 = Device with according Card                                               |                               |        |      |
| Identifier (CI)                                                                                           |                               |        |      |
| identifier (CI)                                                                                           |                               |        |      |
| The command set for the XENAX® force processes are                                                        |                               |        |      |
| avalationed to the decrease "VENIAV" V. i Farra                                                           |                               |        |      |

### **Example: Initialization LINAX®/ELAX®**

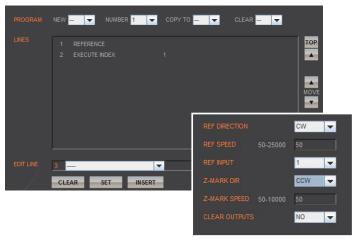
This example shows the initialization of a LINAX®/ELAX® linear motor with the command REFERENCE which then drives to a defined starting position (INDEX 1).

The start position is free to choose as long as it is within the stroke of the motor. In this example the axis drives to start position 0.

#### Important:

The command REFERENCE has to be completed once after powering on the servo controller.

Only after reference, other motion commands are possible.




#### **Example: Initialization rotary motor**

The reference function for rotary motors can be defined in the menu setup / reference (refer chapter "Reference for Rotary Motors"). With this function the motor drives first to a reference switch (approx. zero) and then to the encoder Z-mark.

If reference position differs from starting position, an index (INDEX 1) can be executed to move to start position.

The program starts with the ASCII command "PG1" in the menu *move axis / by command line* or by activating an input function "PG1".



# 12.13 I/O Functions

# **OUTPUT FUNCTIONS**

Assigning output functions to a physical output. ON und OFF of the outputs by mouse click.

#### **INPUT FUNCTIONS**

Assigning input functions to a physical input.

Choice of high- or low-activity of all inputs.

Input 9-12 binary coded.

In the operations overview, the physical input and output conditions are displayed.





# 12.13.1 Selection of Input Functions

**LINAX®:** Reference for LINAX®, travels the distance of two coded reference marks and calculates the absolute position according LINAX® linear motor.

**ELAX®:** Reference for ELAX®, the absolute potion is determined by driving on a mechanical limit.

**Rotary Motors:** Reference according REFERENCE for rotary motors.

Execute index number xx or change according operation IX xx, yy, zz yy with distance zz

Execute Program xx PG xx

Set output xx SO xx

LS-

REF

Clear output xx CO xx

Drive (Jog) positive (const. speed xxxxx inc/sec) JP xxxxx

while input # is active

Drive (Jog) negative (const. speed xxxxxx inc/sec) while JN xxxxx input # is active

iput # 13 active

Capture Position, on triggered edge at input CPOS

Interrupt program, while Input active IP

Stop Impulse, edge triggered\*) SI

Stop Impulse Counter, like SI but SIC does not set position counter to 0\*)

ides not set position counter to 0 )

Limit-switch positive\*) LS+

Emergency Exit with power off\*) EE

Limit-switch negative\*)

Emergency Exit with power on, Position stop (Function can only be used without bus module.

With bus module, apply function "EE")

Power ON continue, keep encoder counter PWC

Execute profile nr. xx PRF xx

Reference Limit Stop, also refer RSTO

menu setup / reference

Speed and acceleration will be reduced by xx percent OVRD xx

Stops and quits active program PGEX

Drive I\_Force No. xx DIF xx

Power stage without power, the linear motor is movable PQ

by hand.

\*) Stop with ED

(Emergency Deceleration) braking ramp



#### **Notes to Input Functions:**

Except EE, EE1 all input functions must only be parameterized in a Pick & Place Maser or Gantry Master.

For rapid deceleration in emergency shut down situations (LL, LR, EE, EE1, SI, SIC, LS-, LS+) the special ED (Emergency Deceleration) can be given a value (COMMAND > ED xxxxx).

The Emergency Exit functions have the highest priority and are always activated immediately. As long as EE is active no other function can be executed.

For the other functions the following applies: If another function is already active it has to be finished before the next one is started. If several function calls are current at the same time, then the one with the lowest input number is executed first.

To run a program endlessly the assigned input can be simply left active.

With Interrupt program (IP) the program being executed can be interrupted. If IP becomes inactive the interrupted program will be continued directly.

With stop impulse (SIC) the running movement is stopped and aborted.

A new travel command can then be executed even with unreleased stop impulse (SIC active).

#### 12.13.2 Selection Output Functions

REF has been completed REF

In motion, motor is running INMO

End of program EDPG

Trigger (5ms, defined by TGU, TGD commands)

Error pending ERR

**TGR** 

Release brake BRK

In position, within deviation target position (DTP) INPO

Limit I\_Force reached (command LIF) IFML

I Force In Sector, when motion is completed

In Sector (during and after motion is completed) INSE

In Force (during and after motion is completed) INFO

Warning pending WARN Information pending INFM

60

WebMotion



# 12.14 Profile (Velocity)

Complex motion profiles can be linked with up to seven profile segments.

The XENAX® servo controller is able to store up to five profiles.

The profile definition includes a start position as well as absolute end-position, end-speed and acceleration of each profile segment. The result of these indications is the segment type (Speed up, Slow down, constant

The "Profile Check" tests if the entered values can be realized with the connected linear motor.

Before profile curve starts, the linear motor has to be located at the predefined start position.

#### **EDIT**

NEW PROFILE = Enter new profile CLR PROFILE = Clear profile

#### **CURRENT PROFILE**

This list contains all predefined profiles.

#### **PARAMETERS**

Set up of the parameters in "CURRENT PROFILE"

S-CURVE

**POSITION** 

Percentage S-curve rounding of the profile. Automatic calculation of jerk parameter for each profile segment.

First panel: Input absolute start position

POSITION SPEED

ACCx1000

End position of corresponding profile segment End speed of corresponding profile segment

Acceleration within profile segment

**PROFILE CHECK** 

The parameters will be checked on drivability (is distance long enough for demanded

speed and acceleration ?)

Correct profile segments are colored in green, wrong segments are red and untested segments are orange

Defined and tested profiles have to be stored in the servo controller under "save".

A profile can be started with the command PRFx. X represents the profile number.

Profiles can also be started as input function or in a program.



# 12.15 Captured Pos

The XENAX® servo controller has two special functions to read the current position of the motor.



# Record function of the actual position controlled by Input

In the WebMotion® menu I/O, you can select the record function CPOS for all digital inputs 1-8.

Reaction time > 4 ms.

(Input 1 = Pos Input 1 etc. ASCII command: TCPn (n = register number)



### Record function of the actual position controlled by edge

With each increasing edge at input 12, the current position of the motor is written in a buffer register (Start is Captured Pos 1).

Reaction time ~ 4-6μs. (First edge position = Captured Pos 1 etc.) ASCII command: TCPn (n = register number)

Function is available over Jenny Science bus module in asynchronous operation, too.



| Object<br>5000h | Sub Idx<br>0x5010<br>0x5015<br>0x5016 | CLCP Clear all Captured Position<br>Captured Position Mode Input 12<br>Captured Position Mode Input 18 | ASCII<br>CLCP<br>CP120<br>CP121 |
|-----------------|---------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------|
| 5003h           | 0x37<br>0x38                          | Read Buffer Position (18)<br>Return of value                                                           | TCPn (n=18)                     |



#### 12.16 State Controller

The closed loop control system consists of a state controller with observer. The parameterization is very easy and clearly arranged.

#### **PAYLOAD**

Additional payload on the linear motor. The weight of the motor carriage slider is automatically taken into consideration with the motor identification.

Or

400.

**INERTIA** (only for rotary motors)

Adjustment of the external torque of inertia. If a gear box is placed between the motor and the load, you must adjust the external torque of inertia according to the motor shaft. The gear transmission ration needs to be squared. e.g. With a gear transmission ratio of 20:1, we need to reduce the external torque of inertia by a factor of

Bei Direktantrieben ist der Parameter-Wert für das Trägheitsmoment des externen Aufbaus (INERTIA) wichtig, sonst schwingt der Antrieb. Da ein Faktor 10-9 eingerechnet ist, kann dieser Parameter sehr grosse Werte annehmen, dann ist dieser im Zahlenfeld rechts einzutragen. Beispielrechnung: Der externe Aufbau ist eine homogene Scheibe mit 1.1kg Gewicht und Ø200mm. Die Formel lautet J = ½m\*r2 = 0.55\*0.12 = 0.0055kgm2, Skalierung mit 10-9 ergibt einen Parameterwert von 5'500'000.

Please refer to document Param\_Rotative\_Motor\_Xvi75V8 on www.jennyscience.de/en for more information.

# **GAIN POS**

Gain of position controller. This parameter must be reduced when payload is increased.

#### **Auto Gain**

Sets the gain of position controller based on the entered payload value. This is a theoretically calculated value. A small adjustment might be necessary and can be completed with "GAIN POS".

#### **FILTER FREQ**

Notch Filters frequency. At a value of 0, the notch filter is deactivated. Typical values are in between 300-500Hz. The frequency might be detected with a smartphone app.





F Setting

Lock at Chapter 0

# F Setting

# **GAIN CUR**

Gain of current controller.

#### Default

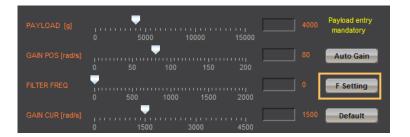
Standard setting of the controller gain of current. This value can be adjusted with "GAIN CUR" and can be set to standard setting with the key "Default".

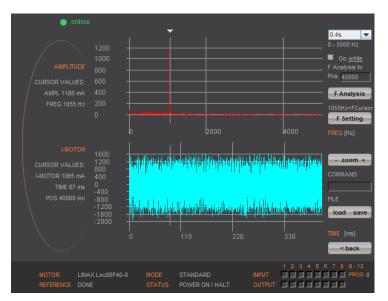
# **DEVIATON POS**

Maximum permissible deviation of position in encoder increments. If this value is exceeded the error 50 occurs and flashes on the 7-segment display.

#### **DEV TARGET POS**

Permissible deviation of position in the target point until the status "in position" comes up.


### 12.16.1 F Setting


The band width of the position control (GAIN POS) should be set as high as the movements can be completed within the tolerable position deviation but before the motor begins to oscillate. In some applications, usually with high payloads, it sometimes happens that no setting can be found that meets both criteria. If the motor with a set band width begins to oscillate because of a resonance in the system, this oscillation can possibly be suppressed with a filter.

In the menu "state controller" in WebMotion® the correct PAYLOAD and the required GAIN POS have to be set. If the motor oscillates, the resonance frequency can be found and suppressed with the frequency analysis function.

With the button "F Setting", the frequency analysis pops up.

When operating, the frequency analysis can be started anytime. But because the current of the motor is being analyzed for the frequency analysis the, the output stage must be turned on. As soon as the analysis is completed, the measuring results are shown in WebMotion® and the frequency can be set.







#### **Settings for the Frequency Analysis**

#### **Recordable Time:**

The longer the recording time is, the higher is the frequency resolution, but the smaller is the measurable frequency range. For each recordable time, the according measurable frequency range will be shown. Please begin with the minimal recording time of 0.4s (with the maximal frequency range). For low resonance frequencies, the analysis can be repeated with higher recording time and reduced frequency range.



# Go while F Analysis

Turned off:

During the frequency analysis there is no movement of the axis. Please select this option, when the analysis should be completed in halt mode or when there is already a movement active (e.g. through a running program or through a superior PLC).



#### Turned on:

During the frequency analysis, the axis moves to the indicated position within the selected recording time.

# F Analysis

#### **F** Analysis

Starts the frequency analysis (and the movement if "Go while F Analysis" is turned on).



#### **F Setting**

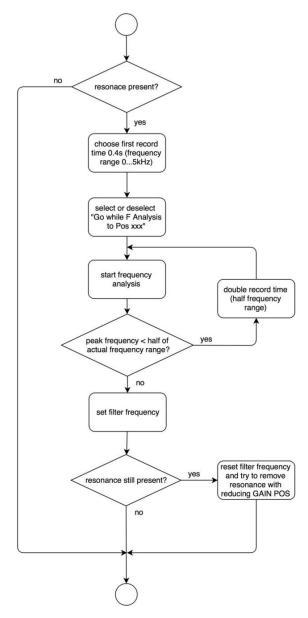
If the cursor is located in the adjustable filter frequency range (160...2000Hz), the filter frequency can be set according to the frequency the cursor shows by clicking the button "F Setting". Directly after the frequency analysis, the cursor is automatically located on the frequency with the maximal amplitude within the adjustable filter frequency range. It is likely that this is where the resonance frequency is. However, the cursor can be moved anytime to set another filter frequency.

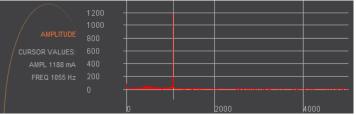
If the filter shall be turned off, the cursor has to be set to the frequency of 0 and then the button "F Setting" has to be pushed.

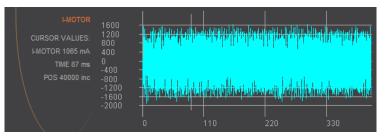
#### **Process of a Frequency Analysis:**

This process shows a typical process of a frequency analysis:

### Notes to frequency analysis:


- The filter frequency might not always be able to clear the oscillation. Especially when the resonance frequency is low, the controller can possibly be affected too much by the filter frequency and the oscillation won't disappear. In this case please reduce GAIN POS until the oscillation disappears.
- If there are multiple resonance frequencies, try to put the filter frequency in the approximate middle of the resonance frequency.
- On frequency 0, the mean current will be displayed during the frequency analysis. It corresponds to the DCportion of the motor current, which is rarely 0.


#### **Diagram Amplitude**


In this diagram, the amplitudes of all existing frequencies in the motor current are shown. The amplitude and the frequency of the cursor position are displayed on the left side of the diagram.

#### **Diagram I-Motor**

This diagram displays the motor current for the frequency analysis. The motor current and the recording time at the cursor position are displayed on the left side of the diagram. Furthermore the same legend shows the position the linear motor slide was located, at the time of the recording.









#### 12.17 Motor

#### 12.17.1 Motors LINAX® and ELAX®

#### **MOTOR TYPE**

The connected motor type of LINAX® and ELAX® series will be recognized and shown automatically.

#### **I STOP**

Maximal nominal current.
Current limitation in standstill position or during constant speed.

#### I RUN

Maximum peak current.
Current limitation during acceleration and deceleration.

#### **POLE PAIRS**

LINAX® Lx and ELAX® Ex linear motor pole pairs = 1

#### **INC PER REVOL**

Number of encoder increments per revolution.

Linear motor axis: Lxc 44F04, INC PER REVOL = 12'000 other LINAX® products Lxc, Lxe, Lxu, Lxs, INC PER REVOL = 24'000 ELAX®, INC PER REVOL =14'171

#### **PHASE DIR**

Direction of phase control U, V, W or V, W, U, depending on motor type. LINAX® / ELAX® linear motor, PHASE DIR = 0

#### **PHASE OFFSET**

Correction of electrical angle, in accordance with the orientation of the coil to the magnet. Value for all LINAX® and ELAX® products and the most of rotary motors PHASE OFFSET = 0





### 12.17.2 Motor Rotary Servo Motors

#### **MOTOR TYPE**

Motors which of Jenny Science are sold, are available in the database engine and can be selected.

For parameterization of rotary servo motors, refer document Param\_Rotativ\_Motor\_Xvi75V8.pdf
On www.jennyscience.de/en/download.

#### **I NOM**

Thermic acceptable continuous current

#### **I TORQUE**

Depends on the application. Limit for acceleration and deceleration, temporary active.

#### **POL PARS**

Number of pole pairs of AC / DC / EC brushless servo motors

For DC brush-type servo motors, set POLE PAIRS to 0

#### **INC PER REVOL**

Number of encoder increments per revolution by AC / DC / EC brushless servo motors. With DC brush-type servo motors it is irrelevant.

#### **PHASE DIR**

Direction of phase control
U, V, W or V, W, U, depending on motor type.
With DC brush-type servo motors:
PHASE DIR = 0, if motor shaft turns clockwise with direct
DC-supply voltage.
PHASE DIR = 1, if motor shaft turns counter clockwise with

PHASE DIR = 1, if motor snaft turns counter clockwise with direct DC-supply voltage.

# **PHASE OFFSET**

Correction of electrical angle, in accordance with the orientation of the coil to the magnet. Value for the most of rotary motors PHASE OFFSET = 0

Harmonic Drive PHASE OFFSET = 330

#### **ROTOR INERTIA**

Rotor moment of inertia of the Motor, with Factor 10<sup>9</sup>

#### **TORQUE CONST**

Torque constant of the Motor, with Factor 10<sup>6</sup>

#### **INDUCANCE**

Phase to Phase inductance of the Motor

#### **RESISTANCE**

Phase to Phase resistance of the Motor





#### 12.18 Reference

#### 12.18.1 Reference LINAX®

# 12.18.1.1 Reference Absolute, According Reference Marks

#### **REFERENCE Selection**

Default, reference over two reference marks on the measuring scale with calculation of the absolute position. This position refers to the mechanical zero point of the LINAX® linear motor axes.



# 12.18.1.2 Reference to Mechanical Stop

#### Selection REFERENCE LIMIT STOP

Important: For LINAX® execute first ">REF", normal reference with absolute position.
Only then ">RSTO" possible.

After the ordinary reference, the command "RSTO" moves the LINAX® carriage slider to a mechanical stop. After the stop, the position can be re-red. This function has no influence on the absolute positioning counter.

# **CREEP DIR**

UP (Travel direction positive) DOWN (Travel direction negative)

#### **CREEP SPEED**

Speed to mechanical stop [INC/s].

# **CURRENT LIMIT**

Nominal motor current [x10mA] during reference Power F = motor current x force constant



#### **REF WINDOW**

Maximal allowed variation compared to last REF position [INC].

REF WINDOW = 0, testing off Output Function REF = 1

REF WINDOW = 1, testing on

Variations within allowed tolerance (REF Window): Output function REF = 1, current REF position will be new reference position.

Variations out of allowed tolerance:
Output function REF = 0,
The subsequent reference will be the new reference
position.

# 12.18.1.3 Modification of Reference Travel Direction

#### **DIRECTION**

Enter start direction of the reference travel direction:

UP (DEFAULT) = Reference direction up. Away,

from absolute zero point, in

positive direction.

DOWN = Reference direction down,

direction towards absolute zero

point.

GANTRY => UP = Motors in same direction up, in

positive direction (away from

zero point).

GANTRY => DOWN = Motors ii

Motors in same direction,

negative direction (towards zero

point).

GANTRY<=>UP = Motors in opposite direction up.

GANTRY<=>DOWN = Motors in opposite direction

down.



# 12.18.2 Reference ELAX®

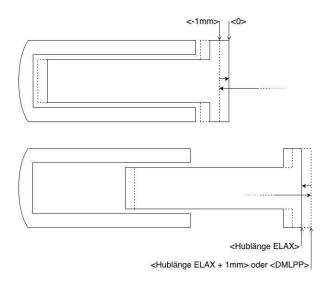
ELAX® does not possess Z-marks on the measuring scale. The absolute position is determined by driving on a mechanical limit. The direction of the reference can be positive or negative (refer to ASCII command **DRHR**)



#### 12.18.2.1 Reference with Internal Limit

If there are no externally mounted limit stops ("MLPN" = 0 and "MLPP" = 0), the reference will be completed by the internal mechanical limits of ELAX® itself.

ASCII command "MLPN"= Mechanical Limit Position Negative ASCII command "MLPP"= Mechanical Limit Position Positive


#### Negative Reference (DRHR = 1)

The slide drives in negative direction until the mechanical limit is recognized. This position will then be set to <1mm> as per definition. In order to complete the reference, the slide moves then to the absolute position 0.

ASCII command "DRHR"= Direction REF

#### Positive Reference (DRHR = 0)

The slide drives in positive direction until the mechanical limit is recognized. If the calibration of the internal mechanical limit was completed (MLC, Mechanical Limit Calibration)positively, the current position is set to the value "DMLPP". If no calibration of the internal mechanical limit was completed positively ("DMLPP" = 0), the current position is set to <stroke ELAX + 1mm> as per definition. In order to complete the reference, the slide moves then to the absolute position <stroke ELAX + 1mm>.

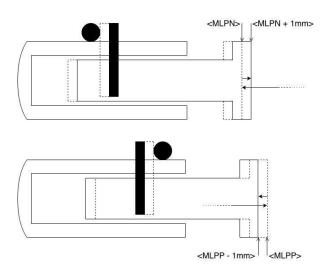


#### 12.18.2.2 Reference with External Limit

If there are externally mounted limit stops (MLPN  $\neq$  0 or MLPP  $\neq$  0), the reference (REF) will be completed to one of the externally mounted limit stops.

ASCII command "MLPN"= Mechanical Limit Position Negative ASCII command "MLPP"= Mechanical Limit Position Positive

#### **Negative Reference**


The slide drives in negative direction until the mechanical limit is recognized. This position will then be set to the value of "MLPN". In order to complete the reference, the slide drives to the absolute position <MLPN +1mm>.

#### **Positive Reference**

The slide drives in positive direction until the mechanical limit is recognized. This position will then be set to the value of "MLPP". In order to complete the reference, the slide drives to the absolute position <MLPP - 1mm>.

#### **Important Note:**

The position of an externally mounted mechanical limit has to be accurate. If the entered position of the externally mounted limit stop is wrong, the alignment of the coils to the magnets cannot be completed and the motor won't be capable to drive. If the ELAX® slide is driven to the internal negative limit position, the slide is positioned at <-1mm> as per definition. The position of an externally mounted limit stop has to be indicated in relation to <-1mm>



#### 12.18.3 Reference Rotary Servo Motors

For rotary Motors only, for LINAX® or ELAX® please use directly command ">REF".

CW = ClockWise
CCW = CounterClockWise

#### **REF DIR**

Defines start direction for searching the external REF sensors 1 = CW, 2 = CCW

#### **REF SPEED**

Defines speed to search the external REF sensor. If no home sensor exists, then set this value to 0.

#### **REF INPUT**

REF sensor external, input number (1-8).

#### **Z-MARK DIR**

Defines start direction for searching the Z-mark on encoder 1 = CW, 2 = CCW.

#### **Z-MARK SPEED**

Speed to search the Z-mark. If no Z mark (Reference mark) exists, then set this value to 0.

#### **CLEAR OUPTPUTS**

Set all outputs to OFF after reference.



#### 12.18.4 Correction Table for LINAX® / ELAX®

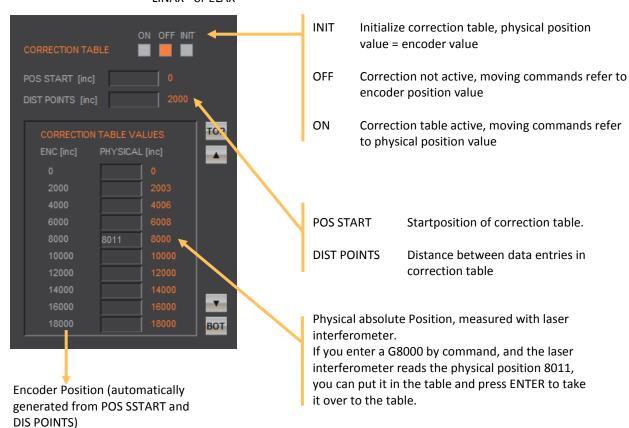
Depending on the application's construction in which a LINAX® or ELAX® linear motor axis is used, it is possible that the encoder position does not correspond to the actual physical position of the linear motor slide (e.g. in cross table or for high cantilevered applications with leverage effect).

To a certain degree, the XENAX® servo controller offers the possibility to correlate the encoder position with the actual position. The correction table in WebMotion® offers 51 entries in which the physical position can be entered in fixed distances to the encoder position. The physical position can be measured with an interferometer.

The range for the way can be freely selected. Furthermore, the starting point and the distances between the entries of the table can be defined. If for example the range 0-100'000 increments shall be corrected, the starting position is 0inc and the distance for the 50 remaining table entries is 2'000 inc (100'000 / 50).

The correction values for the table are determined as follows: If the correction table is deactivated, all positions that were entered in the table are being driven to (example above: 0inc, 2'000inc, 4'000inc, ..., 100'000inc). At each position, the actual physical position has to be measured and entered in the correction table. When activating the correction table, all driving commands refer to the actual physical position and no longer to the encoder position of the LINAX® or ELAX® linear motor axes.

#### Limitations


- Correction table is not supported in case of rotary motors
- Correction table is not supported with communication over Real time Bus module (for example EtherCAT)
- This correction table runs with following commands and functions only: >G, >GP, >GW, >IX, >PRF, >RR, >RW, >TP





#### Input the correction values with WebMotion®:

With the navigation setup/reference in case of LINAX® or ELAX®



#### Notes to correction table:

- For the positions outside of the correction table, the correction of the first respectively the last entry in the correction table holds valid. For example the last entry is "ENC:100'000 -> PHYSICAL 100'017", so for the encoder position of 110'000 the physical value of 110'017 is considered.
- The position values between the table entries are interpolated.
- The correction table is saved in the application data of the XENAX® servo controller.
- After a reset of the XENAX® servo controller (command "RES"), the correction table will be initialized and deactivated (physical position = encoder position).
- During the measurement of the physical position values, the correction table has to be deactivated.



#### **ASCII Commands**

>RES (Reset XENAX®) the correction table status is OFF, encoder values = physical values

>CTAB 0 (= OFF) >CTAB 1 (= ON)

>CTAB 3 (= INIT)

>CTPS 0 (set correction table position start)

>CTDP 10000 (set correction table distance

points)

Setup individual correction table values

>CTPO 20000 (preselect absolute encoder

position)

>CTVA 20003 (set correction table value with

measured physical absolute

position)

#### Important:

The reference point is also depending on the mechanical precision.

Hence this reference point must be always at the same position

We look for Reference REF 2 times.

Application example for Reference:

>REF Absolute position is calculated

anywhere on the linear motor stroke

>G0 Go to absolute position 0

>REF Absolute position is calculated next to

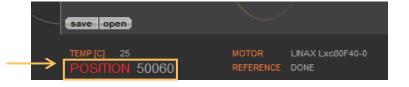
the 0 point

This is repeatable at the same position.

>G0 Go to absolute position 0

→ Now the Linear motor axis is ready

Remark: The position (WebMotion®/TP "Tell Position") is the physical absolute position The POSITION Value is blinking red/white when the correction table is in use.


#### Influence of Temperature on Measuring System

Besides the position deviation, which can be corrected with the correction table, the temperature influence on the measuring system has to be considered, too. The deviation due to temperature can't be corrected in the correction table and is about 8.5µm per degree Celsius and meter for the optical measuring system. The optical measuring system

Please refer to data sheet of the according motor.

#### Examples

1000mm optical glass scale: per 1° Celsius 8.5μm deviation 230mm optical class scale: Per 1° Celsius 2μm deviation



#### 12.19 Basic Settings

General basic settings

#### MODE

Choose mode:

Standard 0
Electronic Gear 1
Stepper Control 2

Coded Prog No (standard) 10

Coded Prog No (stepper control) 12

#### **INC PER PULSE**

Inc. pro Pulse, MODE 2, Puls/Direction controlling.

#### SYNC RATIO

Ratio of electronic gear

#### **CARD IDENTIFIER**

Master/Slave, CANopen, Powerlink Read form start-up key (2 x binary coded switch) or set manual if there is no start-up key.



#### 12.20 Version

Overview of hardware and software versions of XENAX®, bus module and SMU module.

#### **XENAX**®

Overview of firmware, WebMotion® and hardware version.

#### **BUS-MODULE**

Optional bus module with version indication and protocol type.

Mac-address issue with Profinet / Powerlink and EtherNet/IP

If the Mac-address is 0, it misses the Card Identifier.

IP address issue with EtherNet/IP

#### **SMU-MODULE**

Optional SMU module with version indication.





#### 12.21 Update Firmware / WebMotion®

Please also consult the TUTORIAL Video

JSC Tutorial 3: Update Firmware and WebMotion®

on our website.

You can follow each step for the procedure online.

Loading new version of firmware and new WebMotion® to XENAX® or to bus module or SMU module.

The matching software components and hardware platforms can be found in the release notes.

#### **Firmware**

Update of firmware. Select the firmware via Explorer window via mouse click (\*.mot).

The download runs automatically and after the installation all functions are available immediately.

#### Recommended procedure of firmware download:

- Save application

- Disconnect PLC-connector and bus module cable if possible.
- We recommend using a point-to-point connection from PC to XENAX®, not via switch.
- After completion of firmware download reset servo controller with command "RES" (reset) in menu move axis / by command line
  - Reload the application into WebMotion® and download it to servo controller.

#### WebMotion

The WebMotion® update will be completed with the Lantronix DeviceInstaller (<a href="www.lantronix.com/device-networking/utilities-tools/device-installer.html">www.lantronix.com/device-networking/utilities-tools/device-installer.html</a>). Please consult document: "Update\_WebMotion" or "Tutorial Video" on www.jennyscience.ch for detailed information regarding the update procedure.

#### Protocol

Select and download file xx\_application.flash

#### Safety

Select and download file Safety\_Vx.xx.smu We suggest checking and testing the safety settings after a safety firmware update.





#### 12.22 Save

Saves applications, which contain all from the client saved parameters, data and programs.

#### to XENAX

saves applications from WebMotion® to XENAX®.

#### to file

saves applications from WebMotion® to a file on PC/Laptop (Harddisk, Server).

#### to start-up key

Saves applications in the start-up key to load faster on other XENAX®.



#### 12.23 Open

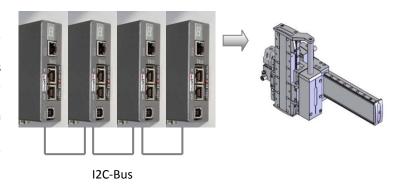
Opens applications, which contain all from the client saved parameters, data and programs.

#### from file

loads an existing application from a file to WebMotion®. Data will be stored into XENAX®.






#### 13 Master / Slave

Please also consult the TUTORIAL video JSC Tutorial 5: Programming of a Pick and Place System with XENAX Master-Slave on our website.

With the master/slave configuration you can control up to 4 axes with one central program.

Typical applications are handlings modules (pick&place).

The master controls his slave's autonomously in stand-alone operation and can directly be controlled by a superior system over simple I/O signals.



#### 13.1 Master/Slave Configuration

Master and slave devices are absolute identical standard Xvi 75V8 servo controllers.

The I2C bus is interconnected via short standard USB patch cables. Both plugs (USB-A) are usable.

No difference between input and output.

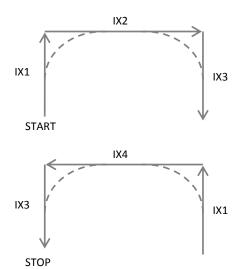
The parameter CI (Card Identifier) must be set on the involved devices as follows:

| Device  | CI | Remote ID   |          |
|---------|----|-------------|----------|
| Master  | 0  | LOC (local) | programs |
| Slave 1 | 1  | REM ID1     | -        |
| Slave 2 | 2  | REM ID2     | -        |
| Slave 3 | 3  | REM ID3     | -        |

#### Important:

The program is running on the master servo controller.

On the slaves servo controller must be no programs loaded.


The start-up key functionality is disabled in master/slave configuration and must be disconnected.



#### 13.2 Programming example Pick&Place

#### X-Axis Master (LOC) Z-Axis Slave (REM ID1)

| 1  | HOME REFERENCE MARK |         |     |
|----|---------------------|---------|-----|
| 2  | HOME REFERENCE MARK | REM ID1 |     |
| 3  | EXECUTE INDEX       | REM ID1 |     |
| 4  | EXECUTE INDEX       |         |     |
| 5  | EXECUTE INDEX       | REM ID1 | 50% |
| 6  | EXECUTE INDEX       |         | 70% |
| 7  | EXECUTE INDEX       | REM ID1 |     |
| 8  | EXECUTE INDEX       | REM ID1 | 50% |
| 9  | EXECUTE INDEX       |         | 70% |
| 10 | EXECUTE INDEX       | REM ID1 |     |



#### Please note:

All indices and profiles have to be defined exclusively in the master device. After turning on the devices, indices and profiles will be automatically transferred to the slaves.

#### 13.3 Timing Master / Slave

The program interpreter is triggered in 1ms intervals.

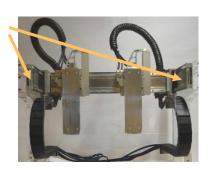
The transmission of a command from the master to the slave takes an additional 0.45ms.

The measurement of time critical sequences is possible with the process timer functionality and the commands: "TIMER\_START" und "TIMER\_STOP". The process time can be read with the command TPT (Tell Process Timer).



#### 14 Gantry Synchronized Mode

In the gantry mode there are two linear motor axes mounted with the same driving direction. Those two axes have to move synchronously. In this example these are the y-axes marked with the arrows.


When switching on the system, these two Y-axes have to be aligned in order to move without mechanical tension.

The alignment is automatically completed with the function "REFERENCE". For "REFERENCE" function for gantry systems you will need the following information:

The arrangement of the two linear motor axes

Is driving direction from the mechanical absolute zero point the same for both axes or in opposite direction

In which direction should the reference be completed (parameter DRHR)



### 14.1 Activate Gantry Mode

MODE 0-29

NC PER PULSE 1-50

SYNC RATIO +-xx:10

CARD IDENTIFIER 0-255

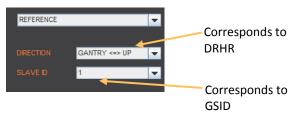
Corresponds to CI

Master-Slave
USB A-A cable

The axis with which will be communicated by ASCII commands is the master. The slave has to be connected to the master via A-A cable.

The slave has to be assigned a CARD IDENTIFIER between 1 and 3. This can be done by WebMotion® under "setup / basic / CARD IDENTIFIER" or with ASCII command

CI x (where x = 1-3).


The card identifier (CI) can also be assigned with a start-up key and an address from 1 to 3. When turning on the logic supply the next time, this CI number of the start-up key is set.

The master has to be assigned to the number 0 or a different Card identifier (CI) than its slave.

| XENAX® | Parameter | Description             |
|--------|-----------|-------------------------|
| SLAVE  | CI        | Card Identifier         |
| MASTER | DRHR      | Direction of reference  |
|        |           | drive and arrangement   |
|        |           | LINAX® / ELAX® linear   |
|        |           | motor axes.             |
| MASTER | GSID      | Gantry Slave ID         |
|        |           | corresponds to CI Slave |

The gantry mode is activated with these settings.

Settings WebMotion® only by the Master-XENAX®





## 14.2 ASCII Commands for Gantry Synchronized Mode

| Command | Description                      |
|---------|----------------------------------|
| REF     | Reference                        |
| GP/G    | Go Position / Go direct Position |
| GW      | Go Way                           |
| IX      | Index                            |
| PRF     | Start profile No. xx             |
| PG      | Program                          |
| EE*     | Emergency Exit                   |
| EE1*    | Emergency Exit 1                 |
| SM      | Stop Motion                      |

Can also be triggered as INPUT FUNCTION in the master.

Reference, profile and indices can also be invoked in a program.

Supported by firmware version 3.58 and higher

<sup>\*</sup> EE and EE1 must only be parameterized in a Gantry Master

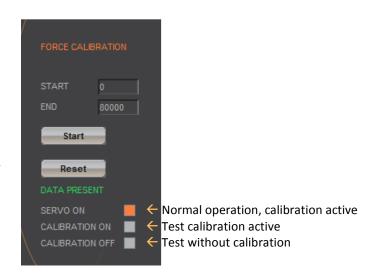
#### **15 Force Processes**

#### 15.1 Overview FORCE Functions

The force processes of the XENAX® servo controller cover four FORCE functions:

- FORCE CALIBRATION: Calibration of the motor through detection of all idle running forces including the payload of the client specific installation on the slide. This creates the basis to precisely determine the external application forces.
- FORCE LIMITATION: Driving with limited force to an object or an end position if there are no objects (e.g. inserting parts). Or driving with very little force in order to detect an "object's touching position".
- FORCE MONITORING: Monitoring the force progression by defining sectors in a force/ way diagram (e.g. inspecting switches). These sectors can automatically be adjusted towards the "object's touching position".
  - FORCE CONTROL: Integration of different FORCE functions into a program. This is how it becomes possible to use the force processes decentrally in the standalone operation mode. Of course these FORCE functions can also be invoked by a superior PLC through Ethernet fieldbus.




#### 15.1.1 Force Calibration

With the patented function "force calibration" of the XENAX® servo controller, the cogging-, load- and friction forces of the iron core LINAX® and ELAX® linear motor axes from Jenny Science can be detected.

This is how it becomes possible to limit, monitor and control forces in processes.

START: Determining the beginning position of calibration process in increments.

END: Determining the ending position of calibration process in increments.



#### 15.1.2 Force Limitation

The current value "I\_Force" is proportional to the force.

Following graph shows corresponding relations for the different linear motor types.

| LINAX®            | Force Constant | Minimal          | Resolution |
|-------------------|----------------|------------------|------------|
| Linear Motor Axis |                | detectable force |            |
| Lxc F04           | 1N ~ 50 * 10mA | 0.5N             | 0.25N      |
| Lxc F08           | 1N ~ 32 * 10mA | 0.5N             | 0.25N      |
| Lxc F10           | 1N ~ 28 * 10mA | 0.5N             | 0.25N      |
| Lxc F40           | 1N ~ 11 * 10mA | 1N               | 0.5N       |
| Lxe F40           | 1N ~ 11 * 10mA | 10N              | 5N         |
| Lxu/Lxs F60       | 1N ~ 10 * 10mA | 10N              | 5N         |

| ELAX®<br>Linear Motor Slide | Force Constant | Minimal detectable force | Resolution |
|-----------------------------|----------------|--------------------------|------------|
| Ex F20                      | 1N ~ 12 * 10mA | 0.5N                     | 0.25N      |



#### Example:

A compression die should apply no more than 4N force on an object.

Force Limitation with "LIMIT I-FORCE" e.g.. ELAX® force constant: 1 N  $^\sim$  12 x 10mA 4 N  $^\sim$  48 x 10mA



#### 15.1.3 Force Monitoring

#### 15.1.3.1 Diagram I\_Force

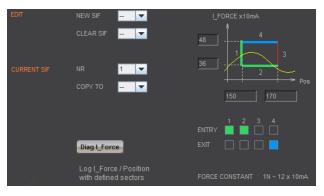
In the menu "Diag I\_Force" the way/force diagram can be recorded by which the force progression through the sectors can be verified.

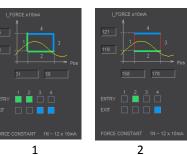


#### 15.1.3.2 Sector I\_Force

In the WebMotion® program menu "sector i-force" up to 10 different force sectors can be defined.

#### Example:


Once an object is touched the force progression shall be examined in a sector of 150 to 170 Increments. When entering the force sector ("ENTRY") the force should be between 3 and 4N. When exiting the sector ("EXIT"), the force should have reached 4N. These force specifications are defined with the in the force sector incoming and exiting sector boundaries.

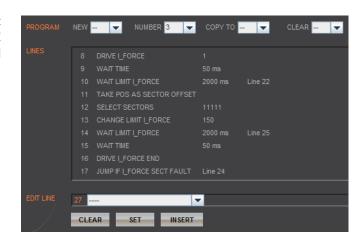

#### **Force Specification Examples:**

- 1) Force curve has to pass through sector from the left/bottom side to right/top side.
- 2) Force curve has to pass through sector from the bottom to the top side.
- 3) Force curve has to reach the sector and can pass through incoming and exiting force boundaries multiple times.

#### Note:

If there are defined incoming and exiting force boundaries, it is absolutely necessary that the force curve passes through them. If there are no incoming force boundaries defined, the force curve has to begin somewhere within the force sector. If there are no exiting force boundaries defined, the force curve has to end within the force sector.








#### 15.1.4 Force Control

#### 15.1.4.1 Program with Force Control Commands

In the WebMotion® menu "program" the different force functions of FORCE CALIBRATION, FORCE LIMITATION and FORCE CONTROL can be combined and defined with the use of the according commands.



#### 15.1.4.1 Drive I\_Force

DRIVE I\_FORCE is driving with force consisting of acceleration (ACCEL), speed (SPEED), current (I\_FORCE) and driving direction (DIRECTION).

After defining and saving the above mentioned parameters, DRIVE I\_FORCE can be included in a program.

Up to 10 DRIVE I\_FORCE can be defined.





#### 15.2 Integration of Force Processes

#### 15.2.1 XENAX® in Program

#### 15.2.1.1 Programming Commands

| Description                                                                                                                                                                                                                                                                                           | Command                                                                                                                   | Parameter  | Master<br>/Slave |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------|------------------|
| Executing Force Calibration, Start Pos xx, End Pos yy                                                                                                                                                                                                                                                 | FORCE CALIBRATION                                                                                                         | хх, уу     | / Slave          |
| Execute DRIVE I_FORCE No. xx                                                                                                                                                                                                                                                                          | DRIVE I_FORCE                                                                                                             | xx         |                  |
| Selection of active sectors with Bit mask. E.g. xx = 1010→ sectors 2 and 4 are active. LSB is on right.                                                                                                                                                                                               | SELECT SECTORS                                                                                                            | xx         |                  |
| Jump to line xx "error handling" if one or more sectors are not passed correctly. Only active sectors are being tested. Caution: Before this analysis can be done, "DRIVE I_FORCE END" has to be completed.                                                                                           | JUMP IF I_FORCE SECTORS FAULT                                                                                             | xx         |                  |
| Wait until Limit I_FORCE is reached according parameter DRIVE I_FORCE within timeout xx, otherwise jump to line yy "error handling"                                                                                                                                                                   | WAIT LIMIT I_FORCE                                                                                                        | хх, уу     |                  |
| Changing Limit DR_I_FORCE to xx x 10mA Value of I_FORCE will overwrite the current parameter I_Force in DRIVE I_FORCE until DRIVE I_FORCE END                                                                                                                                                         | CHANGE LIMIT I_FORCE                                                                                                      | xx         |                  |
| Is taking the actual position as offset value for all sectors followed by the restart of monitoring. Furthermore the positions "Wait for distance greater/less" and "Jump if distance greater/less" are being adjusted by the offset as well.                                                         | TAKE POS AS SECTOR OFFSET (typically touching position, also refer to chapter 15.2.3 Sector Offset for Touching Position) |            |                  |
| Setting offsets for all sectors followed by the restart of monitoring.  xx = [Inc] Offset  Furthermore the positions "Wait for distance greater/less" and "Jump if distance greater/less" are being adjusted by the offset xx as well.  e.g. xx = 0, sets offset incl. TAKE POS AS SECTOR OFFSET to 0 | SET SECTOR OFFSET                                                                                                         | xx         |                  |
| Wait for distance (absolute position – Sector Offset) to<br>be greater than xx within timeout frame yy, otherwise<br>jump to line zz "error handling"                                                                                                                                                 | WAIT FOR DISTANCE GREATER                                                                                                 | xx, yy, zz |                  |
| Wait for distance (absolute position – Sector Offset) to<br>be smaller than xx within timeout frame yy, otherwise<br>jump to line zz "error handling"                                                                                                                                                 | WAIT FOR DISTANCE LESS                                                                                                    | xx, yy, zz |                  |



| Description                                                                                                                                          | Command                           | Parameter  | Master<br>/Slave |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------|------------------|
| Jump to line zz if distance xx (absolute position – sector offset) greater than xx e.g driving distance was too big after force was reached          | JUMP IF DISTANCE GREATER          | XX, ZZ     | Jave             |
| Jump to line zz if distance (absolute position – sector<br>offset) smaller than xx<br>e.g. driving distance was too small after force was<br>reached | JUMP IF DISTANCE LESS             | XX, ZZ     |                  |
| Wait for input No. xx to be High within timeout frame yy, otherwise jump to line zz "error handling"                                                 | WAIT INPUT Nr. HIGH               | xx, yy, zz | MS               |
| Wait for input No. xx to be Low within timeout frame yy, otherwise jump to line zz "error handling"                                                  | WAIT INPUT Nr. LOW                | xx, yy, zz | MS               |
| Wait for process status register Bit xx High within timeout frame yy, otherwise jump to line zz "error handling"                                     | WAIT PROCESS STATUS BIT HIGH      | xx, yy, zz |                  |
| Wait for process status register Bit xx Low within timeout frame yy, otherwise jump to line zz "error handling"                                      | WAIT PROCESS STATUS BIT LOW       | xx, yy, zz |                  |
| Stop Drive I_Force, current position = setpoint position, parameter LIMIT DR_I_FORCE inactive                                                        | DRIVE I_FORCE END                 | xx         |                  |
| Program is being ended and does not proceed to last line. Beneficiary for "error handling"                                                           | PROGRAM END                       |            |                  |
|                                                                                                                                                      | 15.2.1.2 Input Functions Commands |            |                  |
| Selection Input Functions                                                                                                                            |                                   |            |                  |
| Program exit Stop Motion (if driving) and then exiting the current program                                                                           | PGEX                              |            |                  |
| Driving with I_Force No xx [1-10] (pre-programmed)                                                                                                   | DIF                               | xx         |                  |



#### 15.2.2 Over Command Set

#### 15.2.2.1 ASCII Commands

| Description                                                                                                                                                                                                                                             | Commands                                                       | Parameter | MS |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------|----|
| Force Calibration xx=0 -> Reset, deleting all calibration values xx= [Inc] -> calibration distance from current position                                                                                                                                | FC                                                             | xx / ?    |    |
| (Force Calibration Test) testing force calibration xx=0 -> Servo on, in position control xx =1-> test floating slide in balance with calibration function xx=2-> test slide without calibration function                                                | FCT                                                            | xx        |    |
| (Drive I_Force) Driving with limited force until reaching an object or the end position if there is no object.  xx= [1-10] No. of the selected Drive I_Force parameter set                                                                              | DIF                                                            | xx        |    |
| Change Limit DR_I_FORCE to xx x 10mA value xx will overwrite the current parameter DR_I_Force, until DRIVE I_FORCE END                                                                                                                                  | CLIF                                                           | xx        |    |
| Select sectors which should be active.<br>E.g. xx = 100110-> active are the sectors 2,3,6<br>Binary from right side LSB                                                                                                                                 | SSEC                                                           | xx / ?    |    |
| (I_Force Peak) Reads I_FORCE peak value [x1mA] xx=not defined-> Max peak value over all sectors xx=n-> peak value of sector n                                                                                                                           | IFPK                                                           | xx        |    |
| (Sectors I_Force curve failed) shows the active sectors which force curve did not correctly pass through E.g. xx = 1001->Error in sector 1 and 4.                                                                                                       | SIF                                                            | xx / ?    |    |
| (Take Position as Sector Offset) Is taking current actual position as an offset for all sectors with restart of monitoring. Furthermore the positions "Wait for distance greater/less" and "Jump if distance greater/less" are adjusted by this offset. | TPSO (typically touching position , also refer to chapter 2.3) |           |    |
| Provide offset for all sectors with restart of monitoring.  xx = [Inc] offset  Furthermore the positions "Wait for distance greater/less" and "Jump if distance greater/less" are adjusted by this offset xx.  E.g. xx = 0, sets offset to 0            | SSO                                                            | xx / ?    |    |



#### **Changing Parameters over ASCII Commands**

(Number of Sector for change parameter)
Selecting sector number for which parameters shall be
changed. xx = [1-10] Sector number, NSEC? =
Retrieving the selected sector number.

(Sector I\_Force End) End distance of sector xx = [Inc] ending distance (absolute position — sector offset)

(I\_Force Low) lowest value I\_Force in pre-selected sector. xx [x10mA]

(I\_Force High) peak value I\_Force in preselected sector. xx [x10mA]

(Sector transition configuration hexadezimal/decimal)

Definition of transitions **Entry** and **Exit** in sector

xx = activated transition 1,2,3,4 Entry/Exit

| Bit 1512       | 118      | 74   | 30       | XX         |
|----------------|----------|------|----------|------------|
| Entry          | not used | Exit | not used |            |
| 4 3 2 <b>1</b> | 0        | 4321 | 0        | Transition |
| 0001           | 0000     | 0010 | 0000     | bin        |
| 1              | 0        | 2    | 0        | hex        |
|                |          |      | 4128     | dec        |

(Number of Drive I\_Force to change parameter)
Selecting Drive I\_Force number in which parameters
shall be changed.

xx= Drive I\_Force number 1-10. NDIF? = Retrieving selected sector number

(Acceleration for Drive I\_Force) xx [x1'000 inc/s<sup>2</sup>]

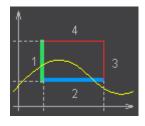
> (Speed for Drive I\_Force) xx [inc/s]

(I\_Force Limit while Drive I\_Force) Limitation of I-Force current while Drive I\_Force xx [x10mA]

(Direction Drive I\_Force) xx = 0 ->positive, xx = 1 -> negative

NSEC xx / ?
Deriving commands:

SIFS, SIFE, IFH, IFL, STC, STCX


SIFS xx/?

SIFE xx/?

IFL xx/?

IFH xx/?

STCX (hex) xx / ?
STC (dec)



NDIF xx/?

Deriving commands: IDIF, DDIF, SDIF, ADIF

ADIF xx/?

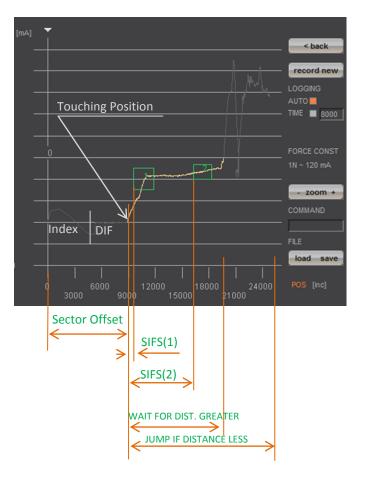
SDIF xx/?

IDIF xx/?

DDIF xx/?

(?) = Retrieving possibility of parameter value by adding a question mark to the command. E.g > NDIF? -> 2

#### 15.2.3 Sector Offset for Touching Position


Typically an object is first touched. All following functions then relate to this touching position. Depending on the size tolerance of the objects, this touching position differs from object to object.

The touching position can very simply be detected with "Drive I\_Force" (by using little force). The command "TPSO" (Take IST-Position as Sector Offset) will take this touching position as sector offset for all functions that follow.

In order to determine the value "Sector I\_Force Start" and "Sector I\_Force End" it is simplest to record the force curve and to calculate the distance to touching position (absolute position – Sector Offset).

"Sector I\_Force Start", "Sector I\_Force End", "Wait for Distance greater/less" and "Jump if Distance greater/less" are distances relative to the touching position (sector offset).

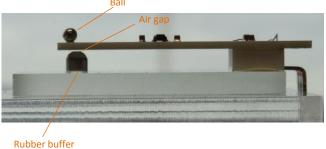
With "SSO" Set Sector Offset = 0 the distances correspond to the absolute positions.





#### 15.3 Application Example

A force sensor consisting of a little mounting plate, ceramic and strain gauge elements glued on the top shall be tested upon its functionality.


The force sensor measures the external force applied to the small ball (upper left corner in picture).



With the ELAX® linear motor slide and the XENAX® servo controller the ball shall be touched and the touching position detected. The touching position is the offset of the actual force curve measurement. This offset compensates the height tolerances of the different measuring objects.



After touching position, the force curve of the ceramic plate shall be recorded. After an air gap of only 200  $\mu$ m, the ceramic plate hits the rubber buffer. At this position the force increases steeper as the rubber buffer acts against the ceramic plate. The maximal force is limited to approximately 12N ~150 x 10mA. Of interest is the increase in force while the plate is bending and the position where the force curve is making a kink upwards when hitting the rubber buffer. For this example, five different sectors are defined on the force-/way curve, which have to be passed correctly.



Hereinafter you can find the according program example 1) as stand-alone version programmed and stored in the XENAX® servo controller 2) as Ascii command set controlled via a superior controller.



#### 15.3.1 Programming Force Process in XENAX®

#### Input / Output Interface Definition

#### **INPUT FUNCTIONS:**

Input 1 = Program 1, Referencing and drive to position 0

Input 2 = Program 2, Force Calibration of ELAX® linear motor slide

Input 3 = Program 3, Entire test process including analysis

#### **OUTPUT "STATUS"**

Output 1 = No touching position found  $\rightarrow$  No test object available

Output 2 = Error of test object

Output 5 = Test object OK.

#### INDEX, DRIVE I\_FORCE und SECTORS

Drive INDEX 1 to Olnc. absolute

 $(1lnc = 1\mu m)$ 

Acc x1000 = 1000

\*\*\*\*\*\* Index 1\*\*\*\*\*

Speed = 100000

Dist = 0

AbsRel = 1

Drive INDEX 2 to 30'000Inc. absolut

\*\*\*\*\*\* Index 2\*\*\*\*\* Acc x1000 = 1000

Speed = 100000

Dist = 30000

AbsRel = 1

\*\*\*\*\*\* Drive I\_Force 1 \*\*\*\*\*\*\*\*\*

Acc x1000 = 100

Speed = 5000IForce x10mA = 6

Direction = 0

In order to determine the following sector parameters, we recommend the following approach:

1. Drive towards test object (Drive I\_Force) with little force (e.g. 0.5-1.0N) and remember the touching position (offset corresponds to the position at

Drive with Force, Force on 0.5N in order to recognize touching

arrowhead)

position.

 $(1N = 12 \times 10mA)$ 

Record Force/Way diagram of a correct test object.
 Then place the testing sectors according to the force curve and retrieve parameters. For Sector I\_Force Start/End the offset has to be subtracted of the touching position.







\*\*\*\*\*\*\* Sector I\_Force 1 \*\*\*\*\*\*\*\*\*
Sector IForce Start = 31
Sector IForce End = 58
IForce Low x10mA = 25
IForce High x10mA = 35
Sector Transit Config = 12480

\*\*\*\*\*\* Sector I\_Force 2 \*\*\*\*\*\*\*\*\*
Sector IForce Start = 100
Sector IForce End = 130
IForce Low x10mA = 65
IForce High x10mA = 75
Sector Transit Config = 12480





No "EXIT" Ending position has to be in sector.



Referencing and driving to position 0, INDEX 1

Calibration of linear motor slide by recording all forces (cogging, friction, weight etc.)

Entire testing process with analysis of result

Reset output status display

Initializing sector offset to 0 (not mandatory)
Selected sectors 0 (not mandatory)

Drive to position 0, all the way to the top
Drive to position 30000, fast driving to pre-position
Drive to touching position with little force (0.5N)
Short wait time, in case the force has been exceeded while
accelerating (when using little forces).
Wait until LIMIT I\_FORCE is reached. If there is no touching
position during timeout frame, jump to error
"no object in place", output 1 ON
Short wait time in order to stabilize touching position
Takes touching position as offset for the following tests
Selecting sectors 1-5

Change I\_FORCE forcurrent Drive I\_Force from, 6 to 150 = 12.5N

Timeout in case that force is not reached, then no output no 5.

Short wait time after force reaches limit to "stabilize".

Drive I\_Force ends
Testing the selected sectors, in case of an error, jump to error
output 5 ON, meaning testing object OK

\*\*\*\*\*\* Sector I\_Force 3 \*\*\*\*\*\*\*\*\*

Sector IForce Start = 158

Sector IForce End = 178

IForce Low x10mA = 119

IForce High x10mA = 121

Sector Transit Config = 8320

\*\*\*\*\*\* Sector I\_Force 4 \*\*\*\*\*\*\*\*\*\*\*
Sector IForce Start = 162

Sector IForce Start = 162 Sector IForce End = 182 IForce Low x10mA = 139 IForce High x10mA = 141 Sector Transit Config = 8320

\*\*\*\*\*\* Sector I\_Force 5 \*\*\*\*\*\*\*\*\*\*

Sector IForce Start = 170
Sector IForce End = 185
IForce Low x10mA = 148
IForce High x10mA = 152
Sector Transit Config = 12288

\*\*\*\*\*\* Program 1 \*\*\*\*\*

Line 1 REFERENCE Line 2 INDEX 1, DEVICE = LOCAL COMPLETION = 100%

\*\*\*\*\*\* Program 2 \*\*\*\*\*

Line 1 FORCE CALIBRATION POSITION START = 0 POSITION END = 50000

\*\*\*\*\*\* Program 3 \*\*\*\*\*

Line 1 CLEAR OUTPUT 1 M/SLAVE DEVICE = LOCAL Line 2 CLEAR OUTPUT 2 M/SLAVE DEVICE = LOCAL

Line 3 CLEAR OUTPUT 5 M/SLAVE DEVICE = LOCAL

Line 4 SET SECTOR OFFSET POSITION = 0

Line 5 SELECT SECTORS 0

Line 6 INDEX 1 LOCAL COMPLETION = 100%

Line 7 INDEX 2 LOCAL COMPLETION = 100%

Line 8 DRIVE I\_FORCE 1

Line 9 WAIT TIME TIME [ms] = 50

Line 10 WAIT LIMIT I\_FORCE TIMEOUT = 2000ms LINE = 23

Line 11 WAIT TIME TIME [ms] = 20

Line 12 TAKE POS AS SECTOR OFFSET

Line 13 SELECT SECTORS 11111

Line 14 CHANGE LIMIT I\_FORCE | I\_FORCE = 150

Line 15 WAIT LIMIT I\_FORCE TIMEOUT = 2000ms LINE = 26

Line 16 WAIT TIME TIME [ms] = 20

Line 17 DRIVE I\_FORCE END

Line 18 JUMP IF I\_FORCE SECT FAULT LINE = 25

Line 19 SET OUTPUT 5 M/SLAVE DEVICE = LOCAL

Line 20 SELECT SECTORS 0

Line 21 INDEX 1 LOCAL COMPLETION = 100%

Line 22 PROGRAM END

Line 23 SET OUTPUT 1 M/SLAVE DEVICE = LOCAL

Line 24 GOTO LINE 26

Line 25 SET OUTPUT 2 M/SLAVE DEVICE = LOCAL

Line 26 DRIVE I\_FORCE END

Line 27 INDEX 1 = LOCAL COMPLETION = 100%



#### 15.3.2 Force Process with ASCII Commands

Download the determined sector parameters into XENAX® servo controller. There are 5 sectors all in all.

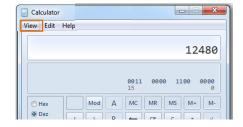
25 31 58 Pos

Below you find the description for sector 1. Sectors 2-5 are structured in the same way.

Pre-selection of sector number
Sector I\_Force Start [Inc]
Sector I\_Force End [Inc]
IFL I\_Force Low [x10mA]
IFL I\_Force High [x10mA]
Sector Transition Configuration

Parameter Sector 1 laden >NSEC 1 >SIFS 31 >SIFE 58 >IFL 25

>IFH 35


>STC 12480

In ordert o be able to see those parameters in the webbrowser under "sector i\_force", the site has to be re-loaded. This is how the values are transferred from the XENAX® to the Webbrowser.

Calculate STC parameter with Win Calc (view of programmer)

Decimal value can be negative if highest Bit, Entry 4 is set.

| Bit 1512 | 118      | 74           | 30       |
|----------|----------|--------------|----------|
| Entry    | not used | Exit         | not used |
| 4321     | 0        | 4321         | 0        |
| 0011     | 0000     | <b>11</b> 00 | 0000     |



#### **Program**

Referencing Axis >REF
Drive to position 0 >G 0

>FC 50000

>DP100

>DIF 1

>TPSO >SSEC11111

>CLIF 150

Remove test objects, axis has to drive without obstacles. Execute Force Calibration from 0 until 50000 Inc (one-time) Old calibration values are deleted beforehand. Force Calibration test, if slider is floating / in balance (optional)

er is floating / in balance (optional) >FCT1
Back to position control (optional) >FCT0

Sector Offset is set to 0 (optional) >SSO 0

Selection of active sectors of 0. Only to be activated before test drive, so the analysis SIFF is correct. >SSEC 0

Drive to position 30'000 Inc >G 30000

Reduce Deviation Position, so the internal calculated desired position does not deviate too much from the actual position of Drive I\_Force.

Otherwise the slide would jump in position when

I\_Force is increased. Only needed when there are long timeouts after Drive I\_Force is reached.

Drive I\_Force 1 moves to touching position

Take Position as Sector Offset (touching position)

Activate sectors 1-5

Change Limit I\_FORCE to 150 x 10mA

Verify tell process status registery, Bit 5 "IN FORCE" >TPSR

Stop Drive I\_Force with Stop Motion >SM
Shows faulting sectors. Response should be 0 >SIFF?
Reset Deviation Position to old value >DP1000
Drive to position 0 >G 0



#### 15.3.2.1 PSR Prozess Status Register

Bit coded process status, return string displays three bytes in HEX format. ERROR = BIT 0 REF = BIT 1 IN\_MOTION = BIT 2 IN POSITION = BIT 3 END\_OF\_PROGRAM = BIT 4 IN FORCE = BIT 5 IN\_SECTOR = BIT 6 FORCE\_IN\_SECTOR = BIT 7 INVERTER\_VOLTAGE = BIT 8 END\_OF\_GANTRY\_INIT = BIT 9 LIMIT\_SWITCH\_LEFT = BIT 10 LIMIT\_SWITCH\_RIGHT = BIT 11 EMERGENCY\_EXIT\_1, REMAIN POWER ON = BIT 12 (Function can only be used without bus module. If used with bus module apply "EMERGENCY\_EXIT"). EMERGENCY\_EXIT, POWER OFF= BIT 13 FORCE\_CALIBRATION\_ACTIVE = BIT 14 I\_FORCE\_LIMIT\_REACHED = BIT 15 STO PRIMED/HIT = BIT 16 SS1 PRIMED/HIT = BIT 17 SS2 PRIMED = BIT 18 SS2 HIT = BIT 19 SLS PRIMED = BIT 20

> SLS SPEED HIT = BIT 21 SLS POSITION HIT = BIT 22 WARNING = BIT 23 DISPLAY INFO ONLY = BIT 24

Tell Process Status Register TPSR



#### 16 Operating Status on 7-Segment Display

| Description                                  | Displa      |
|----------------------------------------------|-------------|
| No firmware, operating system is active      | F           |
| Firmware active, servo controller OFF        | 0           |
| Servo On, control loop closed                | 1           |
| Error refer handling)                        | xx flashing |
| Supply voltage too high >27VDC (e.g. if 48V  | none        |
| logic power is used). The logic is protected |             |
| (from HW 3.00) and won't be activated.       |             |



#### 17 Error Handling

Errors are displayed on the XENAX® servo controller's 7-segment display by flashing a two digit number. With the command ">TE" (Tell Error) they can be retrieved.

There are 3 different categories to differentiate:

| Information | No 0-39  | They do not change state of the servo controller. These are      |
|-------------|----------|------------------------------------------------------------------|
|             |          | simple status indicators.                                        |
| Warnings    | No 40-49 | They can trigger a stop of an active drive (e.g. driving in soft |
|             |          | limit). However, the drive can then be continued without the     |
|             |          | need to switch off the output stage.                             |
| Errors      | No 50-99 | Always cause the output stage to switch off. The drive can       |
|             |          | only be continued after troubleshooting.                         |

The first information/warning/error is always displayed first. A possible follow-up error won't be displayed. Each warning can overwrite information and each error can overwrite a warning or information. The error history can be retrieved with AXII command TEB.

#### 17.1 Error Codes

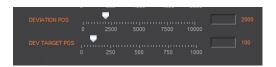
| F-Number | Description                         | Note                                                                                                                                                                                                |
|----------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                     | Information                                                                                                                                                                                         |
| 01 to 12 | Waiting for input xx (Low od. High) | Keeps driving, if status has been reached or restart with HO, REF, SM, or PQ, PWC.                                                                                                                  |
| 20       | Command not allowed                 | Command is not allowed when bus module is active                                                                                                                                                    |
| 30       | I Force Max reached                 | Force proportional motor current reached "Limit I_Force Value" (LIF). Motor current was limited to "Limit I_Force Value". A possible detected error 50 (position deviation to large) is suppressed. |



| F-Number | Description                                                                                  | Note                                                                                                                                                                                                                                                                                         |
|----------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 40       | Driveway limitation due to soft limit values.                                                | Warnings Soft limits can be adjusted in WebMotion® in menu "move axis / by click".                                                                                                                                                                                                           |
| 41<br>42 | Limit switch right / left active<br>Remote Controller Command rejected                       | Limit switches are defined as input function LL / LR.  One of the slave axes has an error or command for the slave could not be                                                                                                                                                              |
| 43       | Remote Controller not recognized                                                             | executed  Master Slave configuration: Not all remote controllers defined in the master were recognized. The programs in the master have to be checked and the invalid remote controllers (Rem ID) have to be deleted.                                                                        |
| 44<br>45 | Remote controller communication error<br>AD Offset Error                                     | Please check Master/Slave cables The AD-Offset for measuring the current could not be retrieved correctly during the first drive. The linear motor has to be turned off while the output stage is turned on for at least 0.5s, so the AD-Offset can be retrieved correctly.                  |
| 46       | Cyclic data are not valid                                                                    | Cyclic data specified via the bus modules are not valid. Check the Data S-Curve, Deviation position, Deviation Target position, I Force Max, Speed and Acceleration.                                                                                                                         |
| 50       | Position deviation is too large.                                                             | Errors  The difference between the internal calculated position and the present motor position (encoder) is larger than the value defined as DP (deviation position) in Closed Loop setup.  Refer to chapter 17.2 Notes for Error 50                                                         |
| 54       | Excessive rise of temperature too over-<br>temperature or weak signal of<br>LINAX® read head | Temperature rise too high/fast.  The signal in the detector head of the measuring system is too weak or.  Clean glass scale on LINAX® linear motor.                                                                                                                                          |
| 55       | Excessive rise of temperature too over-<br>temperature                                       | Temperature rise too high/fast. Check our drive profile.                                                                                                                                                                                                                                     |
| 60       | Over-temperature power stage                                                                 | If temperature, measured with temperature sensor in power stage, power stage will be switched off.                                                                                                                                                                                           |
| 61       | Overvoltage of power supply                                                                  | Power supply voltage or retarding energy from motor too high.                                                                                                                                                                                                                                |
| 62       | Ballast circuit active for too long                                                          | The ballast circuit is active for more than 5 sec continuously. Retarding energy is too high or the power supply voltage is too high.                                                                                                                                                        |
| 63       | Over-temperature LINAX®/ ELAX®                                                               | Coil temperature above 80° in LINAX® / ELAX® linear motor. Power stage will be switched off.                                                                                                                                                                                                 |
| 64       | Under voltage of power supply                                                                | Motor power supply voltage is too low. The power supply probably is not able to deliver temporary demanded peak current exposure.                                                                                                                                                            |
| 65       | Field adjustment on the magnet poles                                                         | The adjustment on the magnet pole was not successful, travel-plate of LINAX®/ELAX® or rotor of a rotary motor is blocked or encoder / motor cable is broken.  If at multi-axis applications, all servo controllers show error 65, then the D-sub encoder connector is unplugged at one axis. |
| 66       | REF error                                                                                    | Push the travel-plate by hand to a "free range" and try "REF" again                                                                                                                                                                                                                          |
| 67       | Z-Mark distance failure                                                                      | The measured distance of coded reference marks are not plausible. Execute "REF" again.                                                                                                                                                                                                       |
| 68       | Velocity too high during REF                                                                 | Execute REF again. Maybe increase of nominal current needed. Could be consecutive fault of vector field adjustment on the magnet pole.                                                                                                                                                       |
| 69       | Error HALL signal                                                                            | Error in the consecutive order of HALL-signals, check Encoder cable.                                                                                                                                                                                                                         |
| 70       | Over-current power stage                                                                     | Potential short circuit or accidental ground in motor cable / coils. Or short circuit in 24V I/O to GND                                                                                                                                                                                      |
| 71       | Power stage disabled                                                                         | Release signal via PLC I/O Pin 9 not present (if activated) or power stage is disabled by Safe Motion Unit (SMU)                                                                                                                                                                             |
| 72       | Speed is too high                                                                            | Maximal speed. For 100nm measuring option = 9'000'000 inc/s = 0.9m/s                                                                                                                                                                                                                         |
| 73       | Over-temperature (I2T)                                                                       | I2T calculation has detected over-temperature in the coil I2t.                                                                                                                                                                                                                               |



| F-Number  | Description                                   | Note                                                                                                                                                                                                                                                                                                                                                                |
|-----------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 74        | Electrical Angle Failure                      | The calculated electrical angle differs more than 40° from the estimated angle. Interrupt power and execute REF again. Cleaning the measuring scale might also be necessary.                                                                                                                                                                                        |
| 75        | Reference pending                             | REF has to be executed before motor can move                                                                                                                                                                                                                                                                                                                        |
| 76        | Gantry Master Salve Offset                    | Difference between automatically measured Gantry Master Salve                                                                                                                                                                                                                                                                                                       |
|           |                                               | Offset and pre-set value through PGMSO great than 0.5mm                                                                                                                                                                                                                                                                                                             |
| 77        | Bus module or serial port communication error | Depending on the operation mode, please check communication between servo controller and bus module or communication over serial interface (RS232/Ethernet). For communication over serial interface adjust Watchdog time if necessary (command "WD")                                                                                                               |
| 79        | Wrong checksum of calibration data            | Force calibration or position of mechanical limit wrong. Restart "Force calibration" (ASCII: fcxx) or "mechanical limit calibration (ASCII: mlc).                                                                                                                                                                                                                   |
| 80        | Over-current PLC Output                       | One or more outputs of PLC interface outputs in 24V source configuration were overloaded. Imax <sub>out</sub> =100mA per channel.                                                                                                                                                                                                                                   |
| 81        | Master / Slave                                | One of the Slave axes reports an error or the command for the Slave axis was not able to be completed.                                                                                                                                                                                                                                                              |
| 82        | Communication error I2C bus to the motor      | Check encoder and extension cables. Connect cable shields on servo controller and motor with GND. Check Master / Slave cables                                                                                                                                                                                                                                       |
| 83        | Internal FRAM error                           | Permanent data storage not possible <sup>1</sup>                                                                                                                                                                                                                                                                                                                    |
| 84        | Start-up key error                            | Test with other key. Functionality in master-slave mode not supported.                                                                                                                                                                                                                                                                                              |
| 85        | I2C switch error                              | Test without master-slave cables.                                                                                                                                                                                                                                                                                                                                   |
| 86        | wrong checksum of application data            | This Error is possible after firmware download. Execute reset (RES)                                                                                                                                                                                                                                                                                                 |
| 87        | Remote controller missing                     | Master Slave configuration: One or more remote controllers defined in master are missing. Check master programs for nonexistent controllers (RemID) and delete them out of programs.                                                                                                                                                                                |
| 88        | General I2C error                             | Check the cable to the motor.                                                                                                                                                                                                                                                                                                                                       |
| 89        | SMU error                                     | Communication error with the safety motion unit. Details to cause and correction are given by WebMotion® as soon as error occurs.  Please refer to chapter 17.3 Notes for Error 89                                                                                                                                                                                  |
| 90        | Functional Safety active                      | The SMU module has turned off power stage. Chosen to cause small ED (Emergency Deceleration).                                                                                                                                                                                                                                                                       |
| 92        | 3- Phase Output frequency > 599Hz             | The output frequency of the 3-phase motor is over 599Hz. There are only movements allowed, which do not lead to an output frequency of >599Hz.                                                                                                                                                                                                                      |
| 93        | Encoder plausibility                          | The encoder signals are not plausible. Possible causes: Encoder cable of motor might not plugged in, interruption of strands in the encoder cable, or encoder signals are led asymmetrically only. When encoder signals are led asymmetrically by intention for rotary motors, the encoder plausibility check can be turned off (refer to SCII command ENCPD).      |
| 97        | Interlaced warnings                           | A new warning occurred before the state which led to the previous warning was cleared. Please make sure process is setup in a way where warnings cannot interlace (e.g. drive in soft limit and then drive in limit switch, before soft limit was left).                                                                                                            |
| "L"       | Level I2C Bus                                 | The Level of the I2C bus is not ok. Bus is blocked. Rotary motor connected to a XENAX® controller with linear axis setup (DIP Switch)? Or servo controller encoder connector defect. Test encoder: disconnect encoder; if XENAX® starts normally, connector is defect. If still not working, please contact Jenny Science for support: website www.jennyscience.ch. |
| "n"       | Level I2C Bus                                 | I2C bus response is "nak" (not acknowledged)  No communication on I2C bus, XENAX® internal or LINAX®/ELAX®, temperature check is not possible.                                                                                                                                                                                                                      |
| ¹) Intern | al hardware failure of the device, please     | , <del></del>                                                                                                                                                                                                                                                                                                                                                       |
|           | contact Janny Science                         |                                                                                                                                                                                                                                                                                                                                                                     |


contact Jenny Science



#### 17.2 Notes for Error 50

Error 50 means that deviation from position target value to actual position value is higher than "DEVIATION POS" (→ WebMotion®, setup, state controller).

There are different possible causes which lead to this error. Please check the following:



#### **Test POSITION Encoder counter**

#### Status Display XENAX® WebMotion®

When the carriage slider of a linear motor axis or the rotary linear motor is being moved by hand, the position encoder counter has to adjust accordingly. If not check cable, signal encoder (check A/A\* and B/B\*).

If a shaft of a rotary motor is being turned clockwise (when looking at front shaft), the POSITION encoder counter has to count positive. When turned counter clockwise, the POSITION encoder counter has to count negative. Compare to chapter 4.2.5 "Definition of Rotating Direction for Servo Motors".

#### Check parameters in setup

**I STOP** sufficient? I RUN sufficient? 2000 (Default) **DEVIATION POS DEVIATION TARGET POS** 100 (Default)

#### Check power supply unit

Are there enough voltage and enough power supply

available?

For LINAX® field adjustment Lxc F04 at least 5,2A Lxc F08 at least 6,1A Lx F10 at least 5,5A Lx F40 at least 6.0A Lx F60 at least. 8.0A

For ELAX® field adjustment Ex F20 at least 5,5A When using LINAX® linear motor axes and ELAX® electric slides, we suggest executing the Quick Start function with automatic system-check.

Test of brushless servo motors for hall signals encoder A/B and motor phase (wiring and colors).

There is no common standardization for servo motor connectors. Jenny Science is happy to support you during the setup process.

Test if motor is running at low velocity

#### With WebMotion®

Menu Motion: S-CURVE 20% AC (x1'000) 100 SPEED 10'000 Power Rep Reverse 10'000

#### **Menu Terminal:**

SCRV20 AC100000 SP10000 WA10000 PWC RR100


#### 17.3 Notes for Error 89

The Fault description would be shown in the WebMotion®.



Error 89: SMU failure

Click on the Button "ERROR 89" and the window would be open.



The Fault description without WebMotion®

Open a terminal program and give in the command "TESM".



# J E N N Y S C I E N C E moving precisely, within tight space

|     | CPU                                       |                                                               |
|-----|-------------------------------------------|---------------------------------------------------------------|
| 200 | RAM/Address test                          | Restart XENAX® <sup>1</sup> .                                 |
| 201 | Flash memory test                         | Restart XENAX® 1.                                             |
| 202 | stack overflow                            | Restart XENAX® <sup>1</sup> .                                 |
| 203 | program sequence                          | Restart XENAX® <sup>1</sup> .                                 |
| 204 | data flash problem                        | Load the parameter again <sup>1</sup> .                       |
| 205 | oscillator drift/stop detection           | Restart XENAX® 1.                                             |
| 203 | oscillator army stop detection            | Nesture AETO OF                                               |
|     | Communication                             | 4                                                             |
| 210 | host communication, external supervising, | Restart XENAX® <sup>1</sup> .                                 |
|     | watchdog                                  | - 1                                                           |
| 211 | internal communication,                   | Restart XENAX® <sup>1</sup> .                                 |
|     | internal supervising                      |                                                               |
|     | Cross checks                              |                                                               |
| 220 | data consistency/checksum master/slave    | Load the parameter again <sup>1</sup> .                       |
| 221 | speed cross compare                       | Restart XENAX® <sup>1</sup> .                                 |
|     |                                           |                                                               |
|     | Software checks                           |                                                               |
| 230 | acceleration plausibility                 | Restart XENAX® 1.                                             |
| 231 | speed calculation interrupt               | Restart XENAX® 1.                                             |
| 232 | firmware version not compatible           | Load the SMU firmware again. <sup>1</sup> .                   |
|     | Hardware checks                           |                                                               |
| 240 | dynamic safety inputs                     | Error by self-check from the safety inputs                    |
|     |                                           | Restart XENAX® 1.                                             |
| 241 | dynamic plausibility circuit encoder      | Error by self-check by the encoder signal check. Possible     |
|     | · / · · · · / · · · · · · · · · · · · ·   | unplugged encoder cable. Restart XENAX® 1.                    |
| 242 | enable feedback test                      | Error by self-check by Enable Enable-feedback signal. Restart |
|     |                                           | XENAX® 1.                                                     |
| 243 | plausibility digital signal               | Invalid state of one or more encoder signals. Check encoder   |
|     |                                           | cable, possible cable break. Restart XENAX® 1.                |
| 244 | plausibility analogue signal              | Invalid voltage difference of one or more encoder signals.    |
|     |                                           | Check encoder cable, possible cable broken.                   |
|     |                                           | Restart XENAX <sup>®</sup> <sup>1</sup> .                     |
| 245 | encoder cable disconnected                | Unplugged encoder cable on XENAX®. Problems with the          |
|     |                                           | signal connecting. Restart XENAX® <sup>1</sup> .              |
| 246 | faulty input states                       | There is only one Input from the safety active. It must be    |
|     |                                           | always two Inputs activated for safety. Restart XENAX®.       |
| 247 | power active input test                   | Pin 9 is activated in XENAX®, this Input should not be used   |
|     |                                           | with the SMU                                                  |
| 248 | scale failure                             | Rotative motors: no Hall signal                               |
|     |                                           | Linear motors:                                                |
|     |                                           | - Dirty measuring system or head                              |
|     |                                           | - problem with the hall signals, check the encoder plug       |
|     |                                           | Restart XENAX® <sup>1</sup> .                                 |
| 249 | overcurrent failure                       | Equivalent to 70 errors on the XENAX®, has been found only    |
|     |                                           | on the SMU. Restart XENAX® <sup>1</sup> .                     |
| 250 | overtemperature failure                   | Equivalent to 60 errors on the XENAX®, has been found only    |
|     |                                           | on the SMU. Restart XENAX® <sup>1</sup> .                     |
| 251 | enable power failure                      | Invalid state of the enable signal for the output stage.      |
| 252 | makes data fallon                         | Restart XENAX® <sup>1</sup> .                                 |
| 252 | motor data failure                        | Motor data has not been transmitted to the SMU. Possibly      |
| 4.  |                                           | communication problems with the SMU. Restart XENAX®1.         |

<sup>1)</sup> Internal hardware failure of the device, with repeated appearance please contacts Jenny Science

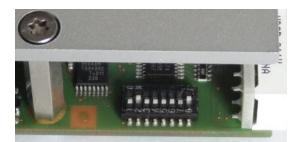


#### 17.4 Arbitrary Display on 7-Segment

After turning on the logic supply (24V), typically a "0" appears on the display. The green LED of the RJ45 connector lights up green when using active Ethernet connection.



If there is an arbitrary sign e.g. "8." or if the display is flickering, there are the following causes possible:




#### 17.4.1 Defective adapter for logic supply

For the logic supply the adapter should deliver 24V DC and at least 300mA. Provides the adapter 24V DC for the logic as well as the power, 5A are required.

Measure logic supply (24VDC), change adapter if necessary.

#### 17.4.2 Defective Firmware



If a wrong or corrupt firmware data was loaded or another cause:

Delete XENAX® with DIP switch firmware recorder and start boot loader:

DIP switch 2 ON
Logic supply ON, firmware recorder is being deleted,
wait until "F" on display,
logic supply off,
DIP switch 2 OFF
Logic supply ON, display "F" >> boot loader active,
Ethernet connection to PC/Laptop and load new

firmware with WebMotion®.

## 17.4.3 GAL contact problems, only with hardware <=2.0

Remove and re-insert GAL.

It is also possible that there is a faulty capillary joint on the GAL pedestal.





#### Note

This instruction manual contains copyright protected information. All rights are reserved. This document may not be in its entirety or partially copied, duplicated or translated without the prior consent of Jenny Science AG.

Jenny Science AG grants no guarantee on, or will be held responsible for, any incidents resulting from false information.

Information in this instruction manual is subject to change.