

Thorlabs Beam Beam Analyzing Software

BP209 M2MS-BP209 操作手册

2018

版本: 7.0 日期: 2018年7月09日

目录

前言		5
1 基	本信息	6
1.1	安全事项	6
2 入	.门指南	7
2.1	产品型号和配件	7
2.2	开箱	8
2.3	准备	10
2.4	要求	10
2.5	安装	11
2.5.1	1 安装软件	11
2.5.2	2 连接PC	17
2.5.3	3 启动应用	17
3 操	•作元件	19
3.1	旋转安装座	19
3.2	安装板	20
4 I'	作原理	21
5 图	形用户界面 (GUI)	22
5.1	菜单栏	23
5.1.1	1 文件菜单	23
5.1.2	2 控制菜单	24
5.1.3	3 选项菜单	24
5.1.4	4 窗口菜单	28
5.1.5	5 视图菜单	28
5.1.6	5 帮助菜单	29
5.2	工具栏	30
5.3	状态栏	31
5.4	保存设置	31
5.5	光束设置	32
5.5.1	1 光学设置	33
5.5.	.1.1 波长	33
5.5.	.1.2 功率校止	34
5.5.2	2 光宋质重分析仪信息	35
5.5.3	5	36
5.5.	.3.1	37
5.5.	.3.2	31

THORLADS

5.5.3	3.3	其他	38
5.5.4	计算	算参数	38
5.5.4	4.1	计算区域	39
5.5.4	4.2	平均模式	41
5.5.4	4.3	限幅水平	41
5.5.4	4.4	最大值	41
5.5.4	4.5	自动峰值调节	41
5.5.4	4.6	校正光束宽度	41
5.5.4	4.7	参考点	42
5.5.4	4.8	单位	42
5.5.5	随时	寸间绘图参数(Plot Over Time Parameter)	43
5.5.6	位私	多台控制	44
5.6	子窗	「口	45
5.6.1	2D	重建	46
5.6.2	3D ²	轮廓	18
5.6.3	X轴	i和Y轴轮廓	50
5.6.4	放け	大和平移图表	52
5.6.5	计算	算结果	52
5.6.6	手动	动测量聚散度	56
5.6.7	调寸	节视图	58
5.6.8	光束	토叠加 €	30
5.6.9	绘图	<u>ع</u> 6	32
5.6.9	9.1	位置绘图	33
5.6.9	9.2	功率绘图	34
5.6.9	9.3	高斯拟合绘图	35
5.6.9	9.4	环境数据绘图	36
5.6.9	9.5	光束稳定性	37
6 使/	用光	束质量分析仪测量6	;9
6.1	操作	仪器	39
6.2	Pass	s/Fail测试	71
6.3	保存	测量结果	73
6.3.1	导出	出设备数据	73
6.3.2	打日	印窗口	76
6.3.3	保存	字测试报告	77
6.4	脉冲	激光源7	79
6.5	刀口	模式	31
7 测	量光	束质量(M²)8	34
7.1	概括		34

THORLADS

	7.2	硬件扩展装置	86
	7.3	M2MS工作原理	87
	7.4	光束直径要求	88
	7.5	M²测量系统扩展装置	89
	7.6	带BP209狭缝式光束质量分析仪的M²测量系统	90
	7.7	搭建	91
	7.7.1	安装光束质量分析仪	93
	7.7.2	连接PC	94
	7.8	准确测量M ²	96
	7.8.1	光束对准	96
	7.8.	1.1 粗略对准	97
	7.8.	1.2 精确对准	98
	7.8.2	M²测量面板10	05
	7.8.3	M²测量设置10	07
	7.8.4	保存M²测量结果10	09
	7.8.4	4.1 保存M ² 测试结果10	09
	7.8.4	4.2 M ² 测量期间保存光束质量分析仪数据1	11
	7.8.5	运行M²测量1	13
	7.8.6	M²测量结果1	14
	7.8.7	M ² 故障排除1	18
	7.9	发散角测量1	21
	7.9.1	光束对准1	21
	7.9.′	1.1 粗略对准1	22
	7.9.′	1.2 精确对准1	23
	7.9.′	1.3 发散光束对准向导1	25
	7.9.2	发散角测量面板12	29
	7.9.3	发散角测量设置1	31
	7.9.4	保存发散角测量结果	32
	7.9.5	运行发散角测量	32
	7.9.6	友散角测量结果	33
	7.10	M²埋论	34
8	自行	行编写应用程序13	37
	8.1	32位操作系统1	38
	8.2	64位操作系统14	40
9	保護	养和维修	12
	9.1	版本及其他信息14	42
	9.2	清洁14	42
	9.3	故障排除14	43

THORLADS

9.	3.1	警告和错误14	44
10	应	用说明14	16
10.	1	坐标系14	46
10.	2	原始数据测量14	46
10.	3	椭圆(拟合)14	47
10.	4	X-Y-轮廓测量14	48
10.	5	高斯拟合测量14	48
10.	6	贝塞尔拟合14	49
11	附	录15	50
11.	1	光束质量分析仪技术数据1	50
11.	2	M2MS-BP209技术数据1	51
11.	3	M2MS扩展装置技术数据1	52
11.	4	光电二极管典型响应度曲线1	53
11.	5	功率范围1	55
11.	6	初始设置1	56
11.	7	BP209图纸1	57
11.	8	狭缝和光电二极管的位置1	59
11.	9	BP209安装转接件图纸10	60
11.	10	M2MS-BP209图纸10	61
11.	11	与旧版硬件的兼容性10	62
11.	12	缩略语列表10	63
11.	13	Thorlabs '报废'政策(WEEE)10	64
11.	14	符号列表10	65
11.	15	认证与合规10	66
11.	16	质保10	67
11.	17	免责声明和版权10	68
11.	18	Thorlabs全球联系方式	69

我们的目标是为您光学测量技术领域的应用研发和提供更好的解决方案。 为了能让我们实现您的期望并不断改进我们的产品,我们需要您的想法和 建议。因此,请告诉我们您想到的任何批评或建议。我们和我们的全球合 作伙伴期待着您的回音。

Thorlabs GmbH

用此符号标记的部分说明可能导致人身伤害或死亡的危险。在执行指示的 步骤之前,请务必仔细阅读相关信息。

注意

用此符号标记的段落说明了可能会损坏仪器和连接的设备或可能导致数据丢失的危险。

提示

本手册还包含以这种标记书写的"注释"和"提示"。

请仔细阅读这些建议!

1 基本信息

Thorlabs会尽量及时更新此手册。如需最新版本,请访问<u>www.thorlabschina.cn</u>。本节包含有关光束质量分析仪安全事项的基本信息。

1.1 安全事项

注意

在任何系统中集成此设备的安全问题都由系统组装者负责。

本使用说明书中有关操作安全和技术数据的所有声明仅在正确操作设备时才适用。

禁止在有爆炸危险的环境中使用光束质量分析仪!为了防止光束质量分析仪过热,请勿遮盖仪器。 只有将设备正确包装到包括塑料泡沫套在内的完整原始包装中,才能退回享受维修服务。如有必 要,可以要求更换包装。维修时请交给有资质的人员!

给用于操作光束质量分析仪的电脑通电前,请确保三芯主电源线的保护导体正确连接到了插座的 保护接地触点!接地不当会导致电击,损害健康,甚至造成死亡!

只能使用Thorlabs提供的经过适当防护且低电阻的USB线来操作设备。

未经Thorlabs书面同意,不得更改单个组件或使用非Thorlabs提供的组件。请勿将任何物品塞入光束质量分析仪前中间的孔径中!因为孔径中没有覆盖玻璃,这样可能会损坏细小的狭缝,破坏电动机的轴承和/或阻塞转筒。

警告

M2MS M²测量系统带有由M2MS内部驱动器供电的对准激光器。使用该激光器时请小心!

2 入门指南

2.1 产品型号和配件

产品型号	描述
BP209-VIS	扫描狭缝式光束质量分析仪,200-1100 nm,孔径9 mm,狭缝5和25 µm, 英制版本
BP209-VIS/M	扫描狭缝式光束质量分析仪,200-1100 nm,孔径9 mm,狭缝5和25 µm, 公制版本
BP209-IR	扫描狭缝式光束质量分析仪,900-1700 nm,孔径9 mm,狭缝5和25 µm, 英制版本
BP209-IR/M	扫描狭缝式光束质量分析仪,900-1700 nm,孔径9 mm,狭缝5和25 µm, 公制版本
BP209-IR2	扫描狭缝式光束质量分析仪,900-2700 nm,孔径9 mm,狭缝5和25 µm, 英制版本
BP209-IR2/M	扫描狭缝式光束质量分析仪,900-2700 nm,孔径9 mm,狭缝5和25 µm, 公制版本

如要测量光束质量(M²), Thorlabs提供硬件扩展装置和完整的M²测量系统:

硬件扩展装置:

产品型号	描述
M2MS	M2测量系统扩展装置
M2MS-AL	M2测量系统扩展装置,250-600 nm (镀铝反射镜)

M²测量系统,带扫描狭缝式光束质量分析仪

M2MS-BP209包含M2MS扩展装置和已安装的BP209光束质量分析仪。我们提供以下型号:

产品型号	描述
M2MS-BP209VIS-AL	M2测量系统,带BP209-VIS,250 - 600 nm
M2MS-BP209VIS-AL/M	M2测量系统,带BP209-VIS,250 - 600 nm,公制
M2MS-BP209VIS	M2测量系统,带BP209-VIS,400 - 1100 nm
M2MS-BP209VIS/M	M2测量系统,带BP209-VIS,400 - 1100 nm,公制
M2MS-BP209IR	M2测量系统,带BP209-IR,900 - 1700 nm
M2MS-BP209IR/M	M2测量系统,带BP209-IR,900 - 1700 nm,公制
M2MS-BP209IR2	M2测量系统,带BP209-IR,900 - 2700 nm
M2MS-BP209IR2/M	M2测量系统,带BP209-IR,900 - 2700 nm,公制

请访问我们的官网<u>http://www.thorlabschina.cn</u>了解更多详情。

2.2 开箱

检查包装是否损坏。如果包装箱似乎已损坏,请保留包装箱,直到检查完里面的物品,并完成了 机械和电气检查。

请确认收到了以下物品:

- 光束质量分析仪外部测量头,带防尘盖
- 1根USB 2.0 A转Mini B电线,长3.0 m
- 快速入门指南

如果购买的是M²测量套件M2MS-BP209:

1. M2MS-BP209VIS-AL (/M)

- M2MS-BP209VIS-AL (/M)测量系统,带已安装的BP209-VIS (/M)扫描狭缝式光束质量分析 仪
- 电源,100 240 V AC / 15 V 3 A DC
- USB 2.0 A转Mini B电线,长3 m
- USB 2.0 A转Mini B电线,直角弯头,长0.5 m
- 1个0.05英寸六角扳手
- M2MS UV配件盒包含:
 - 1个LA4158-UV平凸透镜, f = 250 mm, UV AR膜
 - 1个LA1461-A平凸透镜, f = 250 mm, AR膜: 350 700 nm
 - 4个CL6导轨夹块
 - 1个M2MS对准激光器
 - 1个3 mm球头起子
 - 1颗M4x10备用螺丝

2. M2MS-BP209VIS (/M)

- M2MS-BP209VIS (/M)测量系统,带已安装的BP209-VIS (/M)扫描狭缝式光束质量分析仪
- 电源, 100 240 V AC / 15 V 3 A DC
- USB 2.0 A转Mini B电线,长3 m
- USB 2.0 A转Mini B电线,直角弯头,长0.5 m
- 1个0.05英寸六角扳手
- M2MS VIS配件盒包含:
 - 1个LA1461-A平凸透镜, f = 250 mm, AR膜: 350 700 nm
 - 1个LA1461-B平凸透镜, f = 250 mm, AR膜: 650 1050 nm
 - 1个LA1461-C平凸透镜, f = 250 mm, AR膜: 1050 1700 nm
 - 1个LA5255-D平凸透镜, f = 250 mm, AR膜: 1650 3000 nm
 - 4个CL6导轨夹块
 - 1个M2MS对准激光器
 - 1个3 mm球头起子
 - 1颗M4x10备用螺丝

3. M2MS-BP209IR (/M)

- M2MS-BP209IR (/M)测量系统,带已安装的BP209-IR (/M)扫描狭缝式光束质量分析仪
- 电源,100-240 V AC / 15 V 3 A DC
- USB 2.0 A转Mini B电线,长3 m
- USB 2.0 A转Mini B电线,直角弯头,长0.5 m
- 1个0.05英寸六角扳手
- M2MS VIS配件盒包含:
 - 1个LA1461-A平凸透镜, f = 250 mm, AR膜: 350 700 nm
 - 1个LA1461-B平凸透镜, f = 250 mm, AR膜: 650 1050 nm
 - 1个LA1461-C平凸透镜, f = 250 mm, AR膜: 1050 1700 nm
 - 1个LA5255-D平凸透镜, f = 250 mm, AR膜: 1650 3000 nm
 - 4个CL6导轨夹块
 - 1个M2MS对准激光器
 - 1个3 mm球头起子
 - 1颗M4x10备用螺丝

4. M2MS-BP209IR2 (/M)

- M2MS-BP209IR2 (/M)测量系统,带已安装的BP209-IR2 (/M)扫描狭缝式光束质量分析仪
- 电源,100-240 V AC / 15 V 3 A DC
- USB 2.0 A转Mini B电线,长3 m
- USB 2.0 A转Mini B电线,直角弯头,长0.5 m
- 1个0.05英寸六角扳手
- M2MS VIS配件盒包含:
 - 1个LA1461-A平凸透镜, f = 250 mm, AR膜: 350 700 nm
 - 1个LA1461-B平凸透镜, f = 250 mm, AR膜: 650 1050 nm
 - 1个LA1461-C平凸透镜, f = 250 mm, AR膜: 1050 1700 nm
 - 1个LA5255-D平凸透镜, f = 250 mm, AR膜: 1650 3000 nm
 - 4个CL6导轨夹块
 - 1个M2MS对准激光器
 - 1个3 mm球头起子
 - 1颗M4x10备用螺丝

2.3 准备

- 1. 将Thorlabs Beam软件安装在计算机上,请根据安装软件和部分的说明操作。
- 2. 使用提供的USB电线将光束质量分析仪连接到PC,请根据连接PC¹⁷部分的说明操作。
- 3. 拆下防尘盖。
- 4. 安装光束质量分析仪,让通光孔径对准光束。
- 5. 打开光源,但请确保不要超过仪器允许的最大光功率。请看<u>功率范围</u>示部分了解详情。

注意

通过USB接口将仪器连接到PC之前,请先安装软件。只能使用随附的高速电缆(USB 2.0),不能使用全速电缆(USB 1.1)或电阻更大的细电缆,因为这会导致传输错误和仪器工作异常!

2.4 要求

最低硬件和软件要求:

- 操作系统: Windows 7[®] (32或64位), Windows 8.1[®] (32或64位)或Windows 10[®] (32或64位)
- NI-VISA™ Runtime 15.0及以上
- USB 2.0高速接口
- 显示器最低分辨率1024x758像素(色深 ≥ 16位)
- 处理器: Pentium 4 (最低2.6 GHz), Intel或A64 3000+ AMD (最低3.0 GHz), 4.0 GB RAM
- OpenGL (规格GLX 1.3以上)兼容的图形适配器:
 - Radeon (X100系列 ≥ X850, X1000系列 ≥ X1600, HD系列 ≥2400)
 - Geforce 7系列 ≥ 7600,8系列 ≥ 8500,9系列 ≥ 9600
 - o Quadro FX系列 ≥ FX770M

推荐可以发挥最佳性能的硬件配置:

- USB 2.0高速接口
- 处理器: Intel Core 2 i5或AMD Ryzen 5 (最低3.0 GHz), 8.0 GB RAM
- OpenGL (规格GLX 1.3以上)兼容的图形适配器:
 - Radeon HD系列 ≥ 7000
 - Geforce GTX系列 ≥ 500

2.5 安装

2.5.1 安装软件

"Thorlabs Beam"软件V7.0 (或以上)可以在Thorlabs网站下载:

http://www.thorlabschina.cn/software_pages/ViewSoftwarePage.cfm?Code=Beam

将ZIP文件保存到计算机,然后解压。双击setup.exe开始安装Shield Wizards,请看下图。

安装包含2个主要部分——NI-VISA™ Runtime V17.0和Beam Software,还包括驱动程序和手册。 下面为在Windows 7[®]64位操作系统上的安装过程。

	nistra	tor & Downloads & ThorlahsBoom 7	0.4111.204	(a) Create Th	
Organize	e in li	brary Share with Burn	New folder		
🚖 Favorites	*	Name	Date modified	Туре	Size
📃 Desktop		ISSetupPrerequisites	11.08.2017 11:46	File folder	
🗼 Downloads 🐉 Recent Places	-	🍅 setup	11.08.2017 11:48	Application	108.550 KB

点击"**setup.exe**"。安装程序将检查所装NI-VISA[™] Runtime的版本。如果没有将NI-VISA[™]安装到目标PC上,或者安装的版本是15.0之前的版本,则安装程序会识别出该问题,并要求安装NI软件:

Т Ш	horlabs Beam requires the following items to be installed on your computer. Click stall to begin installing these requirements.
Status	Requirement
Pending	NI VISA Runtime 17.0 Setup
Pending	NI VISA Runtime 17.0 Setup_USBCheck
Pending	NI VISA Runtime 17.0 Setup_SerialCheck
	Install . Cancel

点击Install,并按说明操作:

点击Next >>以继续。

🐙 NI-VISA 17.0 Runtime		🐙 NI-VISA 17.0 Runtime	
Destination Directory Select the installation directories.		Features Select the features to install.	
National Instruments software will be installed in a subfolder of the following. To install in folder, click the Browse button and select another.	nto a different	N-VISA 17.0 Support Instrume Support NET 40 - 45.1 Puritime Support (VI) X NET 45. Puritime Support (VIS) X NET 4.0 Puritime Support (VIS)	National Instruments VISA driver version 17.0, VISA provides an API for controlling VXI, GPIB, Serial, PXI and other types of instruments.
			This feature will be installed on the local hard drive.
Destination Directory C\Program Files (x86) National Instruments\ Browse			
		Directory for NI-VISA 17.0	
		C:\Program Files (x86)\IVI Foundation\VISA\	Browse
Sack Ne Control Ne	xt >> 💦 Cancel	Restore Feature Defaults Disk Co	ost Kack Next >> Cancel

勾选"Search for important messages..."点击"Next"。打开了下面的窗口,再次点击"Next"。

然后Next >>以继续安装,并点击"Finish"。

😡 NI-VISA 5.4 Runtime		🔛 NI-VISA 5.4 Runtime	
Start Installation Review the following summary before continuing.		Installation Complete	
Adding or Changing • NI-VISA 5.4 Run Time Support Serial USB COM Support		Installation complete! You might be prompted to reboot your machin	е.
Lick the Back button to begin installation. Lick the Back button to change the install	auon seunys.		
Save File) << Back	Next >> Cancel	<< 8	lack Next >>

下面两个弹框都点击"Next",然后点击"Finish"完成安装。

🐙 NI-VISA 17.0 Runtime	III III III III III III III IIII IIII IIII					
Driver Software Installation Always trust software from National Instruments		Start Installation Review the following summary before continuing.				
This installer includes driver software signed by Nati uninterrupted installation. If you uncheck the box you Microsoft Windows security dialogs.	onal Instruments. Leave the box below checked for an rinstallation may be interrupted by one or more	Adding or Changing • NI-MSA 17.0 Runtime Support COM Support .NET 4.0 - 4.5.1 Runtime Support (IVI) .NET 4.0 - 4.5.1 Runtime Support (IVI)	nange the installation settings.			
	Kext>>> 😡 Cancel	Save File	Kext Next >> Cancel			
	VI-VISA 17.0 Runtime					
	Installation Complete					
	NI-VISA 17.0 Runtime Vou must restart your computer You must restart your computer If you need to install hardware nor restart later, restart your computer If you need to install hardware nor restart later, restart your computer St	our machine. < <				
出现此消息时,请重启F	出现此消息时,请重启PC。重启PC后,安装程序将继续安装软件。如果没有,请再次执行					

"setup.exe"步骤。

BP209

请仔细阅读许可协议,然后选择"lagree",并点击"Next"。

建议使用推荐路径,点击"Next",然后"Install"以继续。

点击"Yes",允许安装Beam Software。

😸 Thorlabs	Beam - InstallShield Wizard	- • ×
Installing	j Thorlabs Beam	a in 👗 in
P	Please wait while the InstallShield Wizard installs Thorlabs Beam. Take several minutes.	This may
	Status:	
InstallShield -	Rack Next >	Cancel
	< Back Next >	Cancel

然后出现新的窗口,点击"Next"以继续。Windows Security请求确认安装Thorlabs USB驱动器。

可以选择"Always trust software from "Thorlabs GmbH",这样可以缩短安装时间。当然,如果不想这样做,请点击"Install"。然后要求确认进一步安装Thorlabs软件组件。按照上述步骤操作。

Windows Security	Windows Security
Would you like to install this device software?	Would you like to install this device software?
Name: - BP1 Driver Package Publisher: Thorlabs GmbH	Name: Beam Profiler Firmware Loader Driver Pac Publisher: Thorlabs GmbH
Always trust software from "Thorlabs GmbH".	Always trust software from "Thorlabs GmbH".
You should only install driver software from publishers you trust. How can I decide which device software is safe to install?	You should only install driver software from publishers you trust. <u>How can I decide which device software is safe to install?</u>

现在,所有驱动程序都已安装好,然后出现"Read Me"。

点击"Next",然后"Finish",完成软件安装。

2.5.2 连接PC

将光束质量分析仪连接到计算机的USB 2.0高速接口。仅使用光束质量分析仪随附的电缆,或符合高速USB2.0标准的电缆。

注意

请不要使用低速USB电缆,因为可能导致传输错误和仪器工作异常!

同时,强烈建议使用PC USB接口连接。请避免使用USB集线器,因为某些型号可能无法传输指定的最大电流值(500mA)。

将仪器连接到PC后,操作系统会根据光束质量分析仪加载合适的USB驱动程序。

连接后,任务栏会出现一个图标,表示驱动程序正在安装中。如果点击图标,就会出现以下窗口:

Driver Software Installation		— ×-
Thorlabs BP2 Multi Slit Beam Pr	ofiler installed	
Thorlabs BP2 Multi Slit Beam Profiler	Ready to use	
		Close

如要确认驱动程序安装是否正确,请在设备管理器(Device Manager)中检查存在的仪器:

从开始(Start)中选择控制面板(Control Panel),然后进入设备管理器。

NI-VISA USB设备组下的这个条目表示Thorlabs光束质量分析仪已正确安装。

Invise USB Devices
 Invise Thorlabs BP2 Multi Slit Beam Profiler

如果没有看到这种条目,请查看故障排除[143]部分。

2.5.3 启动应用

点击"Programs" → "Thorlabs" → "Thorlabs Beam Application",或者直接点击计算机上添加的相应图标。

应用启动后会自动识别并连接已接入的仪器,显示在光束设置(Beam Settings)面板中:

通常,Beam软件会自动连接到首先接入的仪器。如果接入了多个光束质量分析仪,并且不想使用当前软件所连接的设备,请点击"仪器连接(Device Connection)" ,并点击所需的设备:

如果刚刚将光束质量分析仪连接到PC,或从PC上卸载过光束质量分析仪,请点击'刷新设备列表 (Refresh Device List)'以更新。如果仍然没有看到所需的仪器,请检查USB驱动程序是否已正确 安装(请看<u>故障排除</u>[43])。

选好光束质量分析仪之后,软件就会连接此设备,并显示在光束设置(Beam Settings)面板中,在 此可以对光束质量分析仪进行设置和调整。更多信息请查看<u>设置面板</u>32部分。

建议仔细阅读使用光束质量分析仪测量。可部分,以正确设置仪器。

首次启动光束质量分析仪应用时,会自动打开并排列三个预选窗口。否则,将恢复上一次会话的 配置(选择的窗口及位置)。请看<u>子窗口</u>场部分了解每个窗口的详情。

3 操作元件

3.1 旋转安装座

BP209光束质量分析仪是一个外部光束测量头,适合自由空间应用。它具有旋转安装座。

旋转安装座提供最多±60°的手动旋转,用于调节X和Y扫描轴。松开顶部拨杆,将其向左或向右移动,同时保持安装座固定——光束质量分析仪在外壳内旋转。请使用前面板上的刻度标记达到所需的角度。这样可以测量不同方向上的光束轮廓。

提示

为了获得准确的测量结果,请确保光束垂直于前面板并尽可能靠近孔径中心进入入射孔径。

举个例子,传感器相对于光束旋转的性能对于正确测量光束椭偏度至关重要。

由于椭圆光束的长轴和短轴在空间中的位置可能是任意的,因此,光束质量分析仪的扫描轴必须 与这些轴对齐,以便测量实际的椭偏度。为了实现最精确的对准,最好在旋转BP209的同时观察 X和Y轴的轮廓。寻找轮廓宽度在一个轴上达到最小值且在另一个轴上达到最大值的点。

提示

如果没有对准扫描轴, 椭偏度的测量可能会出错!

3.2 安装板

光束质量分析仪底部有一块安装板,带2个螺纹孔。螺纹类型取决于光束质量分析仪的版本。

使用Thorlabs接杆、接杆支架和底座,将光束质量分析仪安装在光学平台上。

4 工作原理

BP209使用的是狭缝扫描原理,狭缝安装在旋转滚筒的外圈上。转筒配有位置编码器,可以将转筒实际位置的准确信息提供给分析软件。转筒上有两对狭缝(5 µm狭缝适合一般测量,25 µm狭缝适合刀口测量)。

狭缝对相互垂直,一个与旋转轴成+45°,另一个与旋转轴成-45°。扫描轴倾斜45°,这样狭缝的扫描方向分别显示为0°(水平方向)和90°(竖直方向)。扫描方向在仪器正面分别标记为X和Y。

使用旋转安装座,可以让扫描轴在±60°以内倾斜,以对应椭圆光束的长轴和短轴。

除了两对狭缝,转筒还有一个带中性密度(ND)滤光片的孔径。此孔径用于每次旋转时测量积分功率,它为光束轮廓的测量提供必要的参考。

请注意,此功率测量读数是单独的积分光束功率测量(ND滤光片)结果,并不是整个扫描的光束轮廓的数学积分结果。

5 图形用户界面(GUI)

主窗口由菜单栏(1)、工具栏(2)、状态栏(3)和显示多个子窗口的公共框架组成。启动应用程序时,主窗口中会显示一个附加窗口——<u>光束设置(Beam Settings)</u>32(4)面板。可以从主窗口解除 对此面板的固定,将其移动到其他显示位置,比如另一个显示器。

horlabs Beam 6.2 - BP209-VIS/M	0		
Control Options Windo	ws View Help (1)		THOP
0 🖌 🗖 🙆		. 1	
Optical Setup			
Wavelength	635.00	nm	
Power Correction	Start	0 0	
- Model	RP209-VTS/M		
- Serial Number	M00307152		
Driver Version	1.0		
Eirmware Version	0.60		
CPLD Version	0.04		
Slit Information			
Resolution	1.2	[um]	
Samples	7500	Churd .	
Slit Beam Profiler Paramete	r		
Gain Control	Automatic, 12, 12		
Bandwidth Control	125, 125		
Baseline Correction	Automatic		
Photodiode Bias	Off 🗘		
Aperture Width	9.0 \$	mm	
Active Slit Pair	5 \$	μm	
Scanning Mode	Slit 🗘	1	
Scan Rate	Act 10.01, Set 10.00, On		
Calculation Parameter			
Calculation Area	Full ROI		
Averaging mode	Floating		
Number of Averages	1.00	Frames	
Clip Level [%]	13.50	%	
Hold Maximum			
Autoscale to Peak	~		
Correct Beam Width	•		
Reference Position	Sensor Center 4500 4500		
🕨 Unit	µm, dBm, Celsius		
Plot over Time Parameter			
Max. Data Points	100000)	
Time Interval	0.00	s	
Excessive Point Handling	Discard first points		

5.1 菜单栏

可以使用菜单栏项目完成所有用户操作。

File Control Options Windows View Help

5.1.1 文件菜单

这个菜单项用于处理文件或打印。

第一块区域中的条目,导入和导出配置(Import and Export Configuration),对应的是XML文件,这些文件包含有关所选光束质量分析仪及其设置、文件导出参数和应用程序设置的信息。如要将GUI外观和光束质量分析仪设置复制到另一台PC,则需要保存配置文件,将其复制并加载到目标系统上。

第二块区域中的条目,导入和导出设备数据(Import and Export Device Data),用于导入和导出从光束质量分析仪中生成的原始CSV格式数据。强度值保存到文本矩阵。

有**4**列:

列	内容
1	X位置(单位为µm)
2	X位置的强度
3	Y位置(单位为µm)
4	Y位置的强度

也可以连续保存。详细信息请看计算结果。新部分。

第三块区域用于打印子窗口当前显示的内容。

打印应用程序窗口(Print Application Window)可以打印光束质量分析仪应用程序的屏幕截图。

打印当前窗口(Print Active Window)条目将打印光束质量分析仪应用程序当前活动的子窗口。此功能可以打印特定的子窗口。

保存测试报告(Save Test Protocol)会打开一个对话框窗口,可以输入各项数据。点击"保存",然后点击"关闭",将包含计算结果和当前投影图像的测试报告保存到指定位置。如果打开了3D轮廓窗口,则3D轮廓截图也会包含在测试报告中。

有关数据导出的详细示例,请看保存测量结果了章节。

5.1.2 控制菜单

Control Options Windows	使用第一个菜单项启动和暂停光束质量分析仪的连续操作,包括生成
0 Pause	测量数据、执行计算以及在输出窗口中显示图形和数值结果。'下一帧
Next Frame	(Next Frame)'开始单次测量并返回暂停状态。
戻 Clear Windows	后动GUI或更改工作的光束质量分析仪时,应用程序将自动开始连续 工作。暂停连续工作有利于详细分析单个图像。暂停的光束质量分析
🔫 Start NI Network Variables	仪可以随时重新启动。

"**清空窗口(Clear Windows)**"功能会重置所有窗口的内容,包括子窗口。窗口内容将是仪器接收到的下一个测量结果。此功能在同步重新启动所有绘图和基于时间的测量时可能很有用。

提示

所有光束参数的测量和计算数据的积累都在启动软件时自动开始。"清空窗口" — 删除所有累积的数据,并重新开始测量。

开启NI网络变量 (Start NI Network Variables)

提示

如要使用这个命令,需要安装其他National Instruments[®]软件(Distributed System Manager和NI CVI Runtime Engine)。此功能是一个数据接口,用于将以下参数传递到外部程序环境:

饱和度 总功率 X轴和Y轴的中心位置 X轴和Y轴的4-sigma宽度

5.1.3 选项菜单

这些条目用于更改设备(光束质量分析仪)和应用程序(GUI)的具体设置,并可以选择语言。

🎯 光束设置

*光束设置*面板包含所有有关光学设置、光束质量分析仪的属性以及光束参数计算总结的重要信息。请看<u>光束设置</u>或部分了解详情。

🔜 显示设置(Display Settings)面板

这里列出了不同样式的2D重建和3D轮廓以供选择。

🛎 Display Settings					×
Color Scale					
 Logarithmic Linear Quad 	BWInvert	Cool	Copper	Fall	
	Hot	Rainforest	Rings	Spectrum	
	Spring	Summer	Winter		
Error Log File					
Error Log Path	s/Admin/Docu	ments/Thorla	bs/Thorlab	s Beam/Thorlabs.log	Close
					ciose

共有3种不同的色标类型:

- 对数(Logarithmic),建议用于查看分辨率较好的低强度值
- 线性(Linear)
- 平方(Quad),可为较高的强度值提供更好的分辨率。

用户可配置的色标

如果需要特定的色标,则可以创建自定义色标,启动应用程序时可以自动加载。为此,需要考虑以下问题。

启动应用程序时,从文件夹

...\My Documents\Thorlabs\Thorlabs Beam\LUT

加载有效的*.lut文件时,文件必须满足以下标准:

- 具有9列256行的普通文本文件
- 值必须用制表符分隔
- 前三列有256个条目
- 后六列只有129个条目
- 每个值分别表示R(ed)、G(reen)和B(lue)的8位强度(0-255)。

前三列代表用户配置色标的线性色标,中间三列代表对数色标,后三列代表象限色标。 这样的色标可能看起来如下(前两行不是*.lut文件的内容;仅用于说明展示):

线性色标			对数色标			象限色标		
R	G	В	R	G	В	R	G	В
0	255	0	0	255	0	0	255	0
1	255	0	1	255	0	3	255	0
2	255	0	2	255	0	10	255	0
127	255	0	240	255	0	254	255	0
128	255	0	255	255	0	255	255	0
129	255	0						
254	255	0						
255	255	0						

"..." 表示中间的值。

廖尔尔· 将应用设置重置为默认值(Reset Application Settings to Defaults)

此项将所有BEAM应用设置重置为默认值:

应用设置	默认值	释义
增益控制	自动	增益设置为自动。
带宽控制	125 kHz	仪器设置为连续采集数据。
基线校正	自动	由环境光和杂散光引起的ADC输出信号得到补偿。
孔径宽度	9.0 mm	孔径全宽,用于计算。
有效狭缝对	5 µm	用于测量的狭缝对
扫描模式	狭缝	普通模式,相对于刀口模式
目标扫描速率	10 Hz	扫描速率设定值。
扫描速率校正	启用	启用扫描速率校正,控制回路将保持扫描速率接近目 标值。
计算区域预设	自动矩形	软件确定功率水平高于限幅水平的矩形区域。
计算区域限幅水平	1.0 %	如要在自动模式下确定计算区域,需将强度下限设置 为峰值强度的1%,以消除噪声。
平均模式	无	无平均
限幅水平	13.50 %	用于计算椭圆和光束宽度的限幅水平设置为基线和峰 值强度之差的13.5%。
最大值	禁用	达到数据数量的最大值后开始绘图,获取下一个数据 时,弃用第一个数据,加入最新的数据。
自动峰值调节	启用	显示强度的图表按比例缩放到峰值强度。
校正光束宽度	启用	测量结果经过光束宽度校正。
参考点	探测器中心	参考点设置为孔径中心。相对参考点计算中心位置和 峰值位置。
功率单位	mW	所有功率单位都以mW显示。
绘图方法	最新数据	达到数据数量的最大值后开始绘图,获取下一个数据 时,弃用第一个数据,加入最新的数据。
绘图间隔	每次测量	每次测量都会把数据绘图
最大数据点	100000	数据达到最大数量时绘图
速度	200 mm/s	位移台移动速度

可以选择应用程序的语言。

5.1.4 窗口菜单

Windows View Help	首次启动GUI时,	打开默认工作区。	如要关闭和打开窗口,	请切换窗口
2D Reconstruction	菜单中相应的条目	•		
🥃 3D Profile	按子窗口右上方的	∮⊠可以关闭子窗□]_	
Calculation Results				
X Profile				
Y Profile				
Plot Positions				
Plot Power				
🔝 Plot Gaussian Fit				
Plot Environment Data				
🔯 Beam Stability				
M ² Beam Quality Measurement				
🐖 Manual Vergence Measurement				
🖾 Tuning View				
🥜 Beam Overlapping				

5.1.5 视图菜单

Viev	v Help	此菜单项中可以快速选择一些预配置的子窗口("Workspace"):
88	Default Workspace	● 默认(Default):设置面板、数值结果、2D重建、3D轮廓
XY	Profile Workspace M² Workspace	● 轮廓(Profile): 2D重建、3D轮廓、数值结果、X轴和Y轴轮廓
	Empty Workspace	● M ² :光束质量测量,X轴和Y轴轮廓
	Tile View	● 空白(Empty)工作区
-2	Cascade View	此外,打开的子窗口可以重新排列,例如拼贴(Tile)和层叠(Cascade)。
	Maximize Diagrams Show Toolbar and Legends Save current workspace Load workspace Recent Files	"最大化图表(Maximize Diagrams)"同时关闭所有子窗口中的侧面和顶部工具栏, "显示工具栏和标尺(Show Toolbar and Legends)"将它们再次打开。 "保存当前/载入工作空间(Save Current / Load Workspace)"将Beam软件 GUI外观保存到随时可加载的ini文件。

'最近的文件(Recent Files)'列出了最近使用的工作区文件,以便快速加载常用的工作区。

5.1.6 帮助菜单

点击帮助菜单中的第一项'内容(Contents)',或按键盘上的'F1'键打开在线帮助文件,其中包含本 手册中的所有信息。

Help	点击链接访问Thorlabs网页(Visit the Thorlabs Website),将在浏览器
? Contents F1	窗口中打开Thorlabs官网。
Visit the Thorlabs Website View Thorlabs License Agreement	<i>查看</i> Thorlabs (LPGL) 许可证书(View Thorlabs (LPGL) License Agreement)将打开许可文件安装程序包。
Check for Undete	检查更新(Check for Update)搜索可用的软件更新。
Give Feedback About Thorlabs	提供反馈(Give Feedback)会打开一个对话框,可以在此发布有关 BEAM软件的反馈,然后通过电子邮件发送给Thorlabs技术支持。

关于Thorlabs (About Thorlabs)显示设备信息和软件版本详情:

🥃 Thorlabs Beam - Abo	out		×
TH		LABS	
	IOFIADS	beam	
Copyrigh	t@ 2017, T	horlabs GmbH	
Versions:	Application	7.0.4099.312	
	Qt by Nokia NI-VISA Engine	4.8.0 5.4	
	, j		
Beam Profiler:	BC1Source.dll	7.0.312	
	BP1Source.dll	7.0.312	
	BP2Source.dll	7.0.312	
Stage	DDSMStage dll	70312	
Stuge.	VT80Stage.dll	7.0.312	

如对软件有疑问,请将软件的版本信息(Version)提交给Thorlabs。这样可以帮助您解决问题。

5.2 工具栏

对于最重要的菜单条目,工具栏中还提供了符号。

下表阐释了工具栏图标。

- ? 打开在线帮助文档
- 1 暂停和开始连续操作设备 24
- 进行一次测量24
- 清除每个窗口的内容 24
- 恢复<u>光束设置</u>32面板(如果未固定或已关闭)
- 打开<u>设备连接</u>18时话框
- 17月<u>显示设置</u>25面板
- 应用设置重置为默认值[27]
 - 打开子窗口<u>2D重建</u>46

0

۲

XYZ Mr

 \odot

- 打开子窗口<u>3D轮廓</u>48
- 打开子窗口<u>计算结果</u>52
- M 打开子窗口X轴轮廓₅₀
- ゾ 打开子窗口Y轴轮廓₅₀
 - 打开子窗口<u>位置绘图</u>63
- ₩ 打开子窗口<u>功率绘图</u> 64]
 - 打开子窗口<u>光束稳定性</u>67
- M² 打开子窗口<u>光束质量(M²)</u>96
- 🕑 切换自动调节至峰值开关
- 🧘 切换记录最大值开关
- 到 打开子窗口<u>手动测量发散角</u>56
- △ 打开子窗口<u>调节视图</u> 58
 - 了开子窗口<u>光束重叠</u>。

5.3 状态栏

🧭 No instrument errors. 🔰 172 | Samples: 7500 | Scan Rate: 5.00 Hz | Resolution: 1.20 μm | 🛛 4.67 fps

状态栏显示有关狭缝式光束质量分析仪的重要状态信息

- 错误和警告,请看警告和错误 14 章节。
- 绘图数据点状态,请看绘图 62 部分。
- 采集的样本、扫描速率和目标分辨率等仪器设置。
- 应用的当前刷新率,以每秒帧数(fps)为单位。

5.4 保存设置

GUI的实际设置包括图形显示和仪器的配置,退出程序时,设置自动保存。再次启动Beam软件时,自动加载最近一次的设置。

例外: 增益和带宽设置为"自动"时, 禁用基线自动校正。

提示

重启Beam软件时,将忽略上次测量的停止状态,因为它总是以连续模式启动。

5.5 光束设置

光束设置(Beam Settings)面板可以看到所有重要信息,以及对仪器和计算参数进行的设置。为 了方便查看,光束设置主题以可扩展的分组框排列,以便显示或隐藏主题。此外,光束设置面板 是唯一可分离出来的子窗口:启动应用时,此面板默认显示在主窗口中。可将其拖动并放置在 GUI主窗口之内或以外任何方便的位置,例如另一台PC的显示器。分离时,右上角的图钉图标从 愛为 。点击此图标可将此面板带回GUI框架。面板视图可以通过扩展▼或隐藏▶主题实现 自定义排布。

Beam	Settings					
💙 Optical Setup						
Wavelength	635.00	+	nm			
Power Correction	Start		0.00	dB		
😿 Beam Profiler Information	n					
- Model	BP209-VIS/M					
- Serial Number	M00307152					
- Driver Version	1.0					
Firmware Version	0.60					
CPLD Version	0.04					
💙 Slit Information						
Resolution	1.2		μm			
Samples	7500					
💙 Slit Beam Profiler Parame	ter					
Gain Control	Automatic, 12, 12					
Bandwidth Control	125, 125					
Baseline Correction	Automatic, 3449.6	i, 3	444.13			
Photodiode Bias	Off	\$				
Aperture Width	9.0	\$	mm			
Active Slit Pair	5	\$	μm			
- Scanning Mode	Slit	\$				
Scan Rate	10.04, Target 10.0)0,	On			
💙 Calculation Parameter	Calculation Parameter					
Calculation Area	Auto Rectangle, [C	CL1	.0%]			
Averaging Mode	None	\$				
- Clip Level	13.50	÷	% of peak			
Hold Maximum						
- Autoscale to Peak	\checkmark					
Correct Beam Width	✓					
Reference Position	Centroid Position 3	37	8 4012.8			
🕨 Unit	µm, mW, Celsius					
💙 Plot over Time Paramete						
Max. Data Points	100000	-				
- Time Interval	0.00	-	s			
Action after Max. Data	Discard First Point	\$				

光束设置BP209x

请仔细阅读本节,并按照设置说明操作,以实现最高测量准确度。

5.5.1 光学设置

Beam Settings				
💙 Optical Setup				
- Wavelength	635.00	-	nm	
Power Correction	Start		0	dB

光束设置(Beam Settings)面板的这个部分可以

- 设置工作波长 33。
- ●执行<u>功率校正</u>34]。

初始设置

首次连接光束质量分析仪时,设置的是以下默认值:

参数	默认值		
波长	635 nm (BP209-VIS) 900 nm (BP209-IR,BP209-IR2)		
功率校正	关		

5.5.1.1 波长

输入以nm为单位的工作波长,是正确测量总功率的前提。功率计算基于输入的波长和光束质量分析仪中光电二极管的典型响应度曲线。请看<u>光电二极管典型响应度曲线</u>[ss]。正确的波长对于获得准确的光束质量(M²)结果至关重要。

💙 Optical Setup		
- Wavelength	635.00	nm

可输入的波长值限制在识别出的光束质量分析仪的特定波长范围。

5.5.1.2 功率校正

功率校正(Power Correction)部分可以将光束质量分析仪测量的总光束功率调整为其他功率计测量的功率水平。

前提条件:

确保工作波长设置正确。

	Power Correction	Start	0.00	dB	

点击'开始(Start)'——出现功率校正对话框(Power Correction Dialog)。

Power Correction Dialog				
Correct the current Power value display in accordance with the accurate value, measured by an external Power Meter.				
Current Power value: 4.56 mW 🗢				
Power Meter value: 3.29 🖨 mW				

'当前功率值(Current power value)'是光束质量分析仪测量的实际功率。将功率计读数输入'功率计 读数(Power meter value)'。点击'应用(Apply)'开始校正,然后点击'关闭(Close)'离开面板。

输入的功率值与仪器的实际测量功率值之差功率将显示为偏移量,此处为-0.161994 dB。

此偏移量(以dB为单位)存储在光束质量分析仪中,每次连接仪器后会自动读取并激活。

提示

用户校准的功率读数仅在实际波长下才是正确的。如果更改波长,需要再次执行功率校正。

执行功率校正后,偏移量会自动激活,通过复选标记表示。

激活状态保存在软件中。使用同一台仪器重启软件时,会识别偏移量,恢复读数和与上次软件会 话相同的激活状态(已激活/未激活)。

如果功率校正未激活,可以尝试激活,让软件检查光束质量分析仪保存的偏移量。如未找到保存的偏移量,则会打开功率校正对话框,询问功率计值。如果识别出偏移量,将立即应用。因此,如果仪器环境发生变化,则建议执行功率校正。
5.5.2 光束质量分析仪信息

💙 Beam Profiler Information				
···· Model	BP209-VIS/M			
···· Serial Number	M00307152			
···· Driver Version	1.0			
···· Firmware Version	0.60			
CPLD Version	0.04			
Slit Information				
···· Resolution	1.2	[µm]		
Samples	7500			

这些数据是从BP209读取的,无法更改。除了一般信息(光束质量分析仪型号、序列号;驱动、固件和CPLD版本),还有一些探测器的重要信息:

分辨率

是给定扫描速率和<u>孔径宽度</u>38可达到的分辨率。它受AD转换器的采样率限制。

如果扫描整个孔径(9mm),则仅当扫描速率> 19 s⁻¹时,分辨率才会受到影响。扫描速率更高时, 分辨率范围是1.20 μm - 1.24 μm。

通过将扫描孔径限制为整个宽度的10%(Ø 0.9 mm),可以实现更高的分辨率,请看<u>其他</u>38, 使用此选项,分辨率在很大程度上取决于扫描速率,范围从0.124 µm(扫描速率2s⁻¹)到1.24 µm(扫描速率20s⁻¹)。

样本数

是用于光束轮廓计算的测量值数量。它受AD转换器采样率的限制会有所不同,取决于选择的<u>孔径</u> 宽度 38 和扫描速率。

5.5.3 狭缝式光束质量分析仪参数

本节包含光束质量分析仪的一些重要参数,用户可以访问这些参数。请熟悉这些控件的含义,以防调整不当,否则可能导致测量结果错误。下面详细说明了这些控件的含义。

🤝 Slit Beam Profiler Parameter			
💙 Gain Control			
Gain Mode	Automatic	\$	
···· X Slit Gain	12	 ▼	
Y Slit Gain	12	 ▼	
Bandwidth Control			
···· X Slit Bandwidth	125	\$	
Y Slit Bandwidth	125	\$	
V Baseline Correction			
Baseline Mode	Automatic	\$	
···· X Slit Correction	3444.06	*	
Y Slit Correction	3444.06	-	
···· Photodiode Bias	Off	\$	
Aperture Width	9.0	†	mm
···· Active Slit Pair	5	\$	μm
···· Scanning Mode	Slit	\$	
V Scan Rate			
Scan Rate	10.039		[Hz]
···· Target Scan Rate	10.00	\$	
Scan Rate Correction	√		
2 /sec		20 /005	
2/360		20/360	

有关各个参数的详细信息,将在后续章节中说明。

初始设置

初次连接该光束质量分析仪时,设置的是以下默认值:

参数	默认值
扫描速率	10.0 s ⁻¹
扫描速率校正	启用
PD偏压	off ¹)
孔径宽度	全尺寸(9 mm)
有效狭缝对	5 µm
扫描方法	扫描狭缝式
自动增益指数	打开
狭缝X带宽	125 kHz
狭缝Y带宽	125 kHz
自动基线校正	打开

1) BP209-IR2不提供可切换的光电二极管偏压。

5.5.3.1 增益、带宽和基线

🔻 Slit Beam Profiler Parameter				
🤝 Gain Control				
···· Gain Mode	Automatic	\$		
···· X Slit Gain	12			
Y Slit Gain	12			
V Bandwidth Control				
···· X Slit Bandwidth	125	\$		
Y Slit Bandwidth	125	\$		
Baseline Correction				
···· Baseline Mode	Automatic	\$		
- X Slit Correction	3444.06			
Y Slit Correction	3444.06	*		

增益(Gain)和带宽(Bandwidth)是光电流放大器的参数。测量小光束直径时,建议使用更高的带宽,以实现高分辨率。如果使用了整个9.0 mm的孔径宽度,则带宽可以在16 kHz到660 kHz之间设置;如果使用0.9 mm孔径测量,则带宽可以在16 kHz到1000 kHz之间设置。

每次启动软件时,增益设置为自动,带宽设置为125 kHz,基线校正(Baseline Correction)设置为自动。这是大多数测量的首选设置。但是,在某些情况下,比如测量脉冲激光不动时,建议手动更改这些设置。

基线校正

基线是ADC的输出信号,来自光电探测器的暗电流、ADC的输出偏移和噪声。它导致光束轮廓偏 离零线。启用自动基线校正,可以得到补偿。建议启用。

5.5.3.2 扫描速率

扫描速率(Scan Rate)

这里显示的是实际扫描速率(转筒旋转速度)

目标扫描速率(Target Scan Rate)

这是转筒的旋转速度,以s⁻¹为单位。输入的值将转换为转筒驱动的控制电压。可以直接写入2到 20 s⁻¹之间的数值,也可以点击数字框上的箭头,或移动滑动条输入。

扫描速率校正(Scan Rate Correction)

由于转筒驱动发热,实际转速可能与输入的目标扫描速率不同:设备运行时间越长,驱动器在相 同控制电压下运行的速度就越快。启用扫描速率校正,控制回路将保持扫描速率接近目标值。

5.5.3.3 其他

Photodiode Bias	s (Off	\$
Aperture Width	n (9.0	\$ mm
Active Slit Pair		5	\$ μm
Scanning Mode	ſ	Slit	\$

光电二极管偏压(Photodiode Bias)

给光电二极管施加偏压可以缩短上升时间。将偏压设置为On,以测量小光束直径和执行M²测量。

提示

仅能对BP209-VIS和BP209-IR施加偏压。

孔径宽度

最大孔径为9 mm。如果仅使用10%的孔径进行光束分析,分辨率会提高,这在测量小光束直径, 或使用<u>刀口模式</u> an 时尤其明显。

有效狭缝对(Active Slit Pair)

与BP10x系列相比,BP209系列有两对狭缝。狭缝对安装在转筒的外圈上,只有有效狭缝对用于 光束分析。

使用<mark>5 µm</mark>狭缝对,可以采用标准的狭缝扫描法测量小至20 µm的光束直径。如果光束直径小于该 直径,则必须采用刀口模式,配合25 µm 狭缝对使用。这一点在<u>刀口模式</u> 新部分会有详细说明。

扫描模式(Scanning Mode)

光束直径> 20 μm时,选择<mark>狭缝</mark>扫描(5 μm有效狭缝对),光束直径< 20 μm时,选择<mark>刀口</mark>模式 (25 μm有效狭缝对)。

5.5.4 计算参数

这个部分用于设置光束轮廓计算的参数。下方是首次开启Beam软件时,或点击"<u>应用设置重置为</u> 默认值 27]"图标(¹)时计算参数部分的视图:

Bea	m Settings 🛛 🙀 🗙		
Optical Setup			
🕨 Beam Profiler Informati	. BP209-VIS/M, M00307152		
Slit Information			
Slit Beam Profiler Parameter			
💙 Calculation Parameter			
Calculation Area	Auto Rectangle, [CL1.0%]		
- Averaging Mode	None 🔷		
Clip Level	13.50 🗢 % of peak		
- Hold Maximum			
- Autoscale to Peak	✓		
Correct Beam Width	\checkmark		
Reference Position	Sensor Center 4500 4500		
🕨 Unit	μm, mW, Celsius		

5.5.4.1 计算区域

计算区域(Calculation Area)是指整个关注区域(ROI) 内的特定区域,请看相机式光束质量分析仪参数。 虽然ROI确定从相机获取并显示的图像区域,但计算 区域可以等于或小于ROI,并定义图像区域,这个区 域用于所有数值计算。也就是说,ROI中的所有像素 都会显示,而仅计算区域中的像素用于计算。

限制计算区域特别有助于:

- 在多束光中仅选择和分析单个光斑
- 杜绝环境光和杂散光
- 降低测量噪声

提供三个预设值选择计算区域:

Auto Rectangle
Full ROI
User Rectangle

自动矩形(Auto Rectangle):

全ROI(Full ROI):

用户自定义矩形(User Rectangle):

软件将自动分析BP209中的每个图像,并确定存在可测量 功率的区域。功率水平低于限幅水平40的区域不包括在进 一步的计算中。

由ROI定义的整个图像区域参与光束计算。

通过用户输入设置的矩形区域定义计算区域。输入描述计算 区域位置和大小的像素值,或直接在2D投影窗口中拖入一 个矩形。

BP209

选择'用户自定义矩形'时,需要输入计算区域的大小和位置值,或拖入用户自定义矩形边界。所有值均以 µm为单位,原始点位于整个传感器区域的左上角。 X(Y)位置描述用户自定义矩形(椭圆)左(上)边界的位置。

计算区域也可以在<u>2D重建</u>46窗口中设置并看到。详 情请看相应章节。

计算区域的限幅水平(Clip Level of the Calculation Area)

如果计算区域是自动识别的(自动矩形),则计算区域四个方向上的边界均由计算区域限幅水平定义。当所有像素值低于(从峰值看)限幅水平时设置一个方向上的边界。降低限幅水平会增加计算 区域,从而增大4o直径,但也会增加噪声。对于边缘陡峭的光束轮廓,最佳限幅水平值是1.0%。 如果光束轮廓相当平坦,则降低限幅水平可能比较好。

限幅水平默认设置为1%,并且可以在0.01到13.5%的范围内设置。如要快速回到推荐的1.0%限幅水平,只需点击*默认值(Default) (1.0%)*。

	Clip Level	Default (1.0%)	1.00 🖨
) } =	计模员提始阻碍表现上处事故南门资格		

注意 计算区域的限幅水平与光束轮廓计算的限幅水平 41 不同!

注意

计算区域不得截断光束轮廓中强度较低的部分。否则可能导致计算结果不正确!

5.5.4.2 平均模式

	None
Averaging mode	Floating
Number of Averages	Block
t	Rolling

提供三种模式——浮动平均(Floating)、区域平均(Block)和滚动平均(Rolling)。帧数可以设定在1 至100之间。

在**浮动平均模式下**,平均值是根据加权上一个平均值和最近一帧计算得出的。例如:浮动平均值 由10帧计算出。上一个平均值乘以9,然后加上最近的帧,然后总和除以10,得到新的平均值。

在区域平均模式下,累积指定的帧数后再计算并显示平均值。这是最慢的模式。

在滚动平均模式下,对指定数量的最新帧数进行平均。例如:滚动平均值由10帧算出。将最近的 10帧取平均并显示时。这个值会随着新的一帧而更新。

将帧数设置为大于1的数字可以降噪。

这个选项适合强度波动或光束形状不稳定的光源,或屏幕上的更新速率太高而无法轻松读取数据的情况。也可以利用此选项抑制低强度下光束质量分析仪的噪声。

5.5.4.3 限幅水平

与<u>计算区域限幅水平</u>40相比,**限幅水平(Clip Level)**参数用于确定光束宽度。它定义了所测光束轮廓暗水平(0%)和峰值水平(100%)之间的相对强度水平,据此确定光束宽度。根据ISO11146标准建议,1/e²的默认值=峰值强度的13.5%。也可手动输入从5%到95%的值。

点击*默认值(1/e²)*以设定标准限幅水平为13.5%。请看附录应用说明 [18]了解详情。

5.5.4.4 最大值

脉冲激光源建议使用**最大值(Hold Maximum)**功能。后续扫描每个像素,仅最大值会被存储、显示和用于计算。

5.5.4.5 自动峰值调节

勾选'自动峰值调节(Autoscale to Peak)',将轮廓的X轴和Y轴坐标范围调节到峰值强度。禁用会将X轴和Y轴轮廓调到AD饱和度的值。

5.5.4.6 校正光束宽度

校正光束宽度(Correct Beam Width)选项是默认勾选的。

校正所有方法(限幅水平13.5%,带有或没有高斯拟合)中的由于狭缝宽度有限而导致的测量误差。 由于这种卷积误差是系统性的,因此可以算出并消除。此功能可提高测量准确度,测量窄光束时 尤其如此。

5.5.4.7 参考点

参考点(Reference Position)会影响计算结果。峰值位置和中心位置与参考点有关。参考点默认设 置为探测器中心。在2D重建窗口中显示为灰色十字光标。

V Reference Position	Sensor Center
Preset	ROI Center
··· X Position	Peak Position
Y Position	Centroid Position
:	User Position

参考点可以设置为预定义位置(请见上图),或用户定义的位置。用户定义位置的X坐标和Y坐标应 通过数字输入或在2D重建 47 (参考点编辑器)中设置:

VReference Position			
···· Preset	User Position	\$	
···· X Position	4704.00	单 🖡	Im
Y Position	4494.00	单 µ	ım

5.5.4.8 单位

💙 Unit		
Position	pix	\$
- Power	mW	\$
Temperature	Celsius	\$

可以在单位(Unit)主题中选择Beam软件中显示的测量主题。

位置(Position)单位:	µm₀
功率(Power)单位:	mW或dBm。
温度(Temperature):	°C、°F或K。
	いけ みいマン しょうの

(温度通过USB(不包含)连接外部的Thorlabs TSP01环境探头测得。)

下表给出了所有单位的概述。

单位	描述
μm	位置、宽度或距离以µm为单位。坐标系的原点(X=0, Y=0)是探测器中心,而不是图像
	中心!
	正X值位于图像的右侧,正Y值位于图像的顶部。值范围:-4500到+4500μm。
mW	光束的总功率是使用光电二极管总电流的测量值计算出,使用了波长响应曲线和功率
	校正值。
dBm	将总功率从mW转换为dBm: 10 * log (P[mW])。0 dBm = 1 mW
%	相对水平在0到100%之间
度	相对于X轴的角度(以度为单位),范围为-90到+90度

5.5.5 随时间绘图参数(Plot Over Time Parameter)

🔻 Plot over Time Parameter		
Max. Data Points	100000	
Time Interval	0.00 🔷 s	
Action after Max. Data	Discard First Points	
	Discard Last Points	

Beam软件可以显示不同的光束测量图:

位置绘图 63 <u>功率绘图 64</u> 高斯拟合绘图 65 <u>环境数据绘图 66</u>以及 <u>光束稳定性 67</u>

随时间绘图参数(Plot Over Time Parameter)用于配置这些图:

- 可以定义图中的最大数据点N (N=1到100000)。
- 可以选择两个数据点之间的时间间隔(0到1000 s; 默认值=0, 即每次测量)。
- 指定达到记录的最大数据点数量N后执行的操作:
 - 。"弃用最早数据点(Discard first points)"是指弃用第一个数据集,并将最新数据点添加到图中。换句话说,就是在达到绘图的最大数据点N之后,继续作图并显示最新的N个数据点。
 - 。"弃用最新数据点(Discard last points)"是指弃用所有超过N的数据点。换句话说,就是在达到最大数据点数N之后,绘图停止。

5.5.6 位移台控制

如果检测到位移台,则在光束设置面板的底部会出现一个相应的主题。本节中的描述假定使用的是 Thorlabs DDSM100线性位移台,因为<u>M2MS扩展装置</u>家中使用此位移台。

用户可以使用此面板手动控制位移台。这对于粗略设置的M²或发散角测量很有用。

实际位置(Actual Position)显示当前位移台的位置。

目标位置(Target Position)

输入一个介于0到200 mm之间的值,然后按键盘上的'Enter'键,位移台将以设置的速度(Velocity) 移动到新位置。

提示

虽然位移台的平移路径仅为100 mm,但总位移从0到200 mm。这是<u>M2MS</u> 37 M2测量系统扩展装置的机械设计所致。

增量(Increment)

输入增量,用于逐步移动平台。

速度

这是位移台在两个位置(例如,实际位置与目标位置之间)之间移动时的速度。

≪ ≫

按下这些按钮可将位移台后退/前进一步,这一步的大小等于**增量**。

0

按下此按钮中断位移台到目标位置的连续移动。

面板底部的滑动条具有两个功能一一显示位移台位置,使用鼠标移动滑动条使位移台开始移动。

5.6 子窗口

首次启动应用时,会自动打开并排列三个子窗口:

- <u>2D重建</u> 46
- <u>3D轮廓</u> 48
- <u>计算结果</u> 52

应用还提供其他窗口:

- <u>X轴轮廓</u> 50
- <u>Y轴轮廓</u> 50
- <u>位置绘图</u> 62
- <u>功率绘图</u> 64
- <u>高斯拟合绘图</u> 65
- 环境数据绘图 66
- <u>光束稳定性</u> 67
- <u>光束质量(M²)</u> 84
- <u>手动测量发散角</u> 56
- <u>调节视图</u> 58
- <u>光束重叠</u> 60

以上所有窗口都可以通过点击工具栏中图标或在菜单栏的"窗口(Window)"中选择相应条目打开和关闭。

可以根据用户的要求和喜好自行安排Thorlabs Beam软件的外观。所有子窗口的大小和位置都可以灵活调整。以下是排列一些子窗口的示例:

如要关闭子窗口,请取消选择菜单项或相应的工具栏图标,或点击子窗口右上角的关闭按钮"X"。

每个子窗口都可以移动和调整大小。如果关闭子窗口,则会保存其设置,以便在重新打开子窗口 时保持原来的位置和大小。

关闭并重新打开GUI应用程序后,主面板将在之前的位置打开相同的子面板。如要自动排列窗口,请使用"视图(View)"[28]菜单中的"拼贴视图(Tile View)"。

5.6.1 2D重建

2D重建(2D Reconstruction)图显示了光束质量分析仪的功率强度分布图像。此窗口可以通过窗口 菜单中的菜单项"2D重建"或工具栏中的切换按钮 ¹ 打开或关闭。

2D图像基于重建,因为狭缝式光束质量分析仪仅提供两个真实横截面(X轴和Y轴轮廓)的测量结果。 其余的像素值通过将各个行和列的归一化横截面值相乘来计算,并额外进行了底部限幅,以限制 放大的噪声。

提示

请注意,这只是对假定高斯型轮廓的重建,它并没有显示出完整测量的2D横截面。 2D重建窗口左侧的工具栏包含以下切换按钮:

工具栏图标	相关动作
🗳 保存图表或数据	打开一个对话框,用来设置保存的屏幕截图/图表的属性。
└ 坐标刻度	显示或隐藏x轴和y轴坐标刻度
● 颜色	将图像的颜色从灰度更改为彩虹色(请看显示设置25)。
➡ 峰值	使用绿色十字标记峰值位置
◆ 中心	使用蓝色圆圈内的蓝色十字标记光束中心
● 椭圆	使用黄色显示近似的光束椭圆
• Set Reference Position to Sensor Center Set Reference Position to Peak Position Set Reference Position to Centroid Position Set Reference Position to User Position	参考点会影响计算结果。峰值位置和中心位置与参考点相关。参考位置可以是探测器中心、峰值位置、中心位置或用户自定义的位置。用户自定义位置可以在参考点编辑模式或在 <u>光束设置</u> 421中设置。
 Set Calculation Area Automatic Set Calculation Area to Full Size Set Calculation Area by User 	计算区域是整个ROI的子区域。它定义了用于所有数值计算的重建 区域,可以通过点击切换按钮□实现显示或隐藏此区域的切换。 下拉菜单可以选择自动(Automatic)或全尺寸(Full Size);另外,它 可以由用户自定义。详细信息请看 <u>光束设置</u> 3 部分。
▲ 插入X轴和Y轴轮廓	将X轴和Y轴轮廓绘制到2D图形中,以显示水平和竖直截面内的功率分布。 这些X轴和Y轴横截面的位置相对于探测器中心固定。
▶ 长度测量编辑器	长度测量编辑器会在投影图像旁边打开一个表格。在投影图像中绘制线条时,线条长度会列入表格中。最多可以绘制10个线条。删除 某一长度数据既可以通过选择数据并按"DEL"键实现,又可以选择 这个数据并通过右键菜单选择"删除距离(Delete Distance)"完成。
	O 2D Beconstruction Image: Color Distance [µm] X [µm] Image: Color Distance [µm]

如果窗口高度小于整个工具栏,则下部图标将收集到折叠菜单中,可通过工具栏底部的箭头按钮访问。

5.6.2 3D轮廓

3D轮廓图展现所测光束的功率密度分布。光束的横截面与X-Y平面平行,而相对功率强度沿Z轴方向显示(伪3D)。此窗口可以通过窗口菜单中的菜单项"3D轮廓"或工具栏中的切换按钮

或关闭。可以通过子窗口右上角的X按钮将其关闭。

可以使用鼠标移动、旋转和缩放3D轮廓:

旋转: 按下鼠标右键并移动鼠标

移动: 按下鼠标左键并移动鼠标

缩放: 滚动鼠标滚轮

下表总结了3D轮廓窗口中可用的工具栏图标及其对应的操作。

工具栏 图标	相关动作
	打开一个对话框,用来设置保存的屏幕截图/图表的属性。
	打开 3D 轮廓设置对话框。
	轮廓外观在实心和网格(默认)之间切换。
+ + +	将移动、旋转和缩放后的图像重置为默认视图。

位置、大小和旋转角度也会显示在3D轮廓设置(3D Profile Settings)对话框中。可以在此处输入数 值以定义3D轮廓外观:

谩 3D Profile	Settings 🔋 💌
3D Profile	
X Position	-3.80
Y Position	-3.00
Zoom	-24.00
X Rotation	46.00
Y Rotation	39.00
Style	Solid 🔷
Speed	Quality
	Close

提示

- 如果滑动条"速度-质量(Speed Quality)"位于最右边,则3D图像以最高质量显示。
- 设置的3D图像质量越高,使用的系统资源越多。根据系统能力不同,软件可能会变慢。

5.6.3 X轴和Y轴轮廓

可以通过窗口(Windows)菜单中的菜单项"X轴轮廓"或"Y轴轮廓"选项,或点击相应的工具栏图标分别打开和关闭这两个窗口。

也可以通过子窗口右上角的X按钮将其关闭。

X轴和Y轴轮廓显示光斑沿坐标轴分布的强度,坐标轴标记在光束质量分析仪的前面板上。

黄色曲线显示测量的轮廓,而红色曲线显示近似的<u>高斯</u>和别合函数,蓝色显示近似的<u>贝塞尔</u>和 拟合。曲线可以通过切换图表上方相应的按钮显示/隐藏。

如果启用"自动峰值调节",则测量的曲线将显示从0到100%的相对强度,其中100%表示所选行/ 列中X轴和Y轴上的最大强度值。

如果禁用"自动峰值调节"功能,则X轴和Y轴轮廓将显示峰值幅度,等于相应狭缝对模数转换器的 饱和度。

高斯拟合曲线的幅度可能低于或甚至高于测量曲线的峰值强度。

如果启用"自动峰值调节"功能(图标)),则会显示选择的限幅水平(默认值13.5%)。 水平刻度以um为单位显示。

工具栏图标	相关动作
	打开一个对话框,用来设置保存的屏幕截图/图表的属性。
	打开一个对话框,将测量数据保存为XLS或CSV文件。
	切换按钮以在图表中显示网格。默认显示网格。
• 1 •	还原按钮
I	光标模式——切换按钮以显示或隐藏光标。
	显示或隐藏计算区域

光标模式

将鼠标指针移到竖直光标线附近。鼠标指针变为♣。按下鼠标左键,可以将光标线移动到图表内的某个位置。光标位置的当前数值显示在光标旁边的矩形中,数值的颜色与曲线的颜色对应。

5.6.4 放大和平移图表

所有带有一个滑动块的图表,例如X轴和Y轴轮廓、绘制曲线图、M²和发散角图,都可以进行X轴和Y轴刻度调整(缩放)以及X轴和Y轴定位(平移)。

放大模式

如要放大图表,请按住鼠标左键绘制一个矩形。右键点击此图撤消上一次放大操作。

😯 还原按钮返回以显示完整的图表。

放大图轴

h.

将鼠标光标移至竖直或水平滚动条的边缘。光标变为\$;或⇔。按下并按住鼠标左键,移动鼠标,就可以放大图轴的相应部分。使用还原按钮返回默认视图。

平移图轴

将鼠标指针移至竖直或水平滚动条的中心,然后按下鼠标左键,就可以移动滑块以 平移图表。使用还原按钮返回默认视图。

5.6.5 计算结果

此窗口中显示计算结果。窗口可以通过窗口菜单中的菜单项"计算结果"或工具栏中的切换按钮 打开或关闭。

列的宽度是预定义的,但可以调整。首次启动Beam软件时,此表中将显示如上所示的参数。点击 表中绿色方框内的图标 , 以选择或取消选择要计算和显示的参数。启用的计算结果越少,软件 的速度性能就越高。

Select / Deselect All	-
Calculations Derived from Raw Dat	
Beam Width (4-Sigma) X	
Beam Width (4-Sigma) Y	
Peak Position X	
Peak Position Y	
Peak Position R	
✓ Centroid Position X	
✓ Centroid Position Y	
Centroid Position R	Ξ
✓ AD Saturation	
✓ Total Power	
Ellipse	
Ellipticity	
Minor Ellipse Diameter	
Major Ellipse Diameter	
Mean Ellipse Diameter	
Eccentricity	
Orientation	_
Profile Measurement	
✓ Beam Width Clip X	
 Beam Width Clip Y 	
Fit Measurement	
Gaussian Intensity X	
Gaussian Intensity Y	
Gaussian Diameter X	
Gaussian Diameter Y	
Bessel Intensity X	
Bessel Intensity Y	
Environment Parameter	-
	Ľ

提示

即使在计算结果面板中不勾选高斯和/或贝塞尔拟合计算,但如果启用X轴和Y轴轮廓窗口,仍会在窗口中显示相应的拟合曲线。

计算单位可以在<u>光束设置/单位</u>42¹中更改。</sup>如果计算失败,则此值变为"--"。 有关这些参数的详细信息,请看<u>应用说明</u>46¹。

处理计算结果和设置

工具栏图标	相关动作
	保存计算结果
2 <mark>00</mark>	锁定/解锁测试参数
	载入测试参数配置
	保存测试参数配置

保存计算(Save Calculations)会打开一个对话框:

Save Calcu	ulation Results	● 选择目标文件夹(请看预览面板)
File		● 确定文件名
Folder	ser name]\Documents\Thorlabs\Thorlabs Beam	 ● 选择文件格式(*.txt、*.csv或*.xls)
Filename	Data	● 添加日期、时间、索引(选填)
Format	Text Format (*,txt)	● 点击"保存计算"
✔ Date	YYYY-MM-DD	
✓ Time	hh.mm.ss 🗢	
✓ Index	1	
Preview	C:/Users/[user name]/Documents/Thorlabs/Thorlabs Beam/Data_2016-04-19_11.00.41_#001.txt	
	Save Calculations	

锁定/解锁测试参数;载入/保存测试参数配置

这些功能与Pass / Fail测试 72 功能的配置有关。

连续保存

此功能用于按序连续保存选择的计算结果集 527,例如用于长期分析。

Save Calcula	ation Results		
File			
Folder	ser name]\Documents\Thorlabs\Thorlabs Beam		
Filename	Data		
Format	Text Format (*.txt)		
✔ Date	YYYY-MM-DD		
✓ Time	hh.mm.ss 🗢		
✔ Index	1		
Preview	C:/Users/[user name]/Documents/Thorlabs/Thorlabs Beam/Data_2016-04-19_11.00.41_#001.txt		
	Save Calculations		
Save Data	al Saving		
Save bat			
• •			
() E	very 10 🗣 th Measurement.		
Stop Saving After			
○ Reaching Capacity of 100 📥 MB.			
Reaching Saving Time of 60 = sec.			
O Saving 100 ➡ Times.			
Start Sequential Saving			
Close			

- 选择目标**文件夹(**请看预览面板)。
- 确定文件名
- 选择导出格式
- 添加日期和/或时间(选填)
- 保存数据(Save Data)……选择一个

→两个记录之间的时间间隔(1到10⁶ sec)

或

- →每隔n次测量记录一次(n = 1到10⁵)
- 在……之后停止保存(Stop Saving after...)确定何时终止连续保存:
- →达到一定的文件大小(1到100 MB)之后
- →达到一定的记录时间(1到10⁶ sec)之后
- →达到一定数量的数据集(1到10⁵)之后
- 点击"开始连续保存"

数据集记录到一个文件中,每个新记录都附加到先前记录 的数据集上。 5.6.6 手动测量聚散度

聚散度是指光束的发散角或会聚角。手动测量聚散度使用简单的机械装置测量此角度。安装光束质量分析仪,使其沿着光束传播轨迹滑动。可以使用例如Thorlabs M2位移台或Thorlabs燕尾导轨 (RLA系列)、导轨滑块(RC系列)和接杆组合完成此操作。

通过从菜单栏中选择相应的条目"窗口(Windows) → 手动测量聚散度(Manual Vergence Measurement)"或直接点击图标型打开手动测量聚散度窗口:

1. 点击左上角的图标 [∞],以打开"手动测量聚散度设置"。选择光束直径计算方法。测量光源和光 束质量分析仪前面板之间的距离,并将此值以毫米为单位输入"Position 1",然后点击 [≫]图标。

$\mathbf{>}$	$\mathbf{>}$
Position 1	Position 2
Position [mm] 240.00	Position [mm] 241.00

2. 软件计算position 1的光束宽度。

- 3. 移动光束质量分析仪,再次测量距离,将新距离输入"Position 2",然后按第二个**ジ**图标。
- 4. 软件计算position 2的光束宽度,并根据输入距离的变化计算并显示X轴和Y轴的聚散度。

Position 1 Position [mm] 240,00		Position 2 Position [mm] 270,00				
0		٩				
Beam Width (4-Sigma) X [µm]	2931.34	Beam Width (4-Sigma) X [µm] 2926.41				
Beam Width (4-Sigma) Y [µm]	2326.58	Beam Width (4-Sigma) Y [µm] 2417.01				
Results						
Vergence Mean [deg]	0.04	Vergence X [deg] -0.00				
Distance [mm]	30.00	Vergence Y [deg] 0.09				

提示

光束质量分析仪与光源之间的距离需要手动输入,这两个值的准确度对于聚散度测量的准确性 非常重要。

提示

如果将光束质量分析仪与M2MS扩展装置一起使用,即M2MS-BP209x测量系统,则手动测量聚 散度变得更加简单:

- 从系统上拆下聚焦透镜。
- 将激光束入射到M2MS-BP209x的通光孔径并对准。
- 在光束设置面板中打开位移台控制 44 主题。
- 使用位移台滑块设置0和200 mm的位置,然后如上所述操作。

5.6.7 调节视图

调节视图子窗口可以以模拟方式显示可选值,这样有助于调整光学设置。

从菜单栏选择"窗口(Windows) → 调节视图(Tuning View)"或直接点击或直接点击[△]图标。调节视 图可以显示2个指针刻度或4个条形图。每个刻度或图形可以分配给以下参数之一:

- 传感器饱和度
- 总功率
- 椭偏度
- 光束宽度4σ(X)
- 光束宽度4σ(Y)
- 峰值位置X
- 峰值位置Y
- 中心位置X
- 中心位置Y
- 椭圆直径最小值
- 椭圆直径最大值
- 光束宽度限幅X
- 光束宽度限幅Y

刻度上观察到的最小值和最大值显示为蓝色三角形。可以使用上面标记的 > 按钮将其重置。

5.6.8 光束叠加

光束重叠(Beam Overlapping)工具用于调整光束的位置。例如,可以调整两个光源,使得它们的光斑在某个位置重叠并且同心。

从菜单栏选择"窗口(Windows) → 光束叠加(Beam Overlapping)"或直接点击 图标。

通过点击"保存拍摄1(Save Shot 1)"或"保存拍摄2(Save Shot 2)"拍摄参考位置的快照。软件立即 开始将光束质量分析仪中的2D重建实时图像与拍摄的截图叠加在一起。重叠方法可以在"复合模 式(Composite Mode)"中选择:

叠加"增强"

"增强(Plus)"模式增加截图和实时图像的强度。这种模式便于调节,尤其是对于低强度区域的调节。

叠加"明亮"

"明亮(Lighten)"模式在叠加区域内仅显示强度较高的"像素";截图和当前光束的强度未增加。

叠加"差值"

最后,"差值(Difference)"模式将强度相减。叠加区域中显示为黑色的区域越多,实时图像就与参考截图重合得越好。

截图和实时图像之间的中心偏移沿X轴和Y轴方向显示,R是这两个中心之间的绝对距离。

为了提高叠加区域的可视化效果,可以按25%的步长(滑动条)对截图和实时图像的强度进行加权。

5.6.9 绘图

Thorlabs Beam提供多个额外的绘图窗口来显示光束的特性:

位置绘图 63 功率绘图 64 高斯拟合绘图 65 环境数据绘图 66 光束稳定性 67

可以通过"窗口(Windows)"菜单访问所有绘图窗口,工具栏中也有位置绘图、功率绘图和光束稳 定性的图标。可以使用"菜单栏 → 控制(Control) → 清空窗口(Clear Windows)"命令或 ■图标来清 空绘图。

视图功能可以便于详细分析参数随时间的变化。

- **显示/隐藏**特定参数:相应按钮位于图表上方。
- 缩小:按下并按住鼠标左键并标记所需的图表区域。
- **撤消缩小:**右键点击图表以重现之前的状态。
- 放大图轴

将鼠标光标移至竖直或水平滚动条的边缘。光标变为\$〕或⇔。按下并按住鼠标 左键,移动鼠标,就可以放大图轴的相应部分。右键点击此图即可返回默认视 图。

● 平移图轴

将鼠标指针移至竖直或水平滚动条的中心,然后按下鼠标左键,就可以移动滑 块以平移图表。使用还原按钮返回默认视图。

- 自动调节(Autoscale): 左侧工具栏中的此按钮可将图表返回默认视图(自动调节)
- 光标模式:如果鼠标位置靠近竖直光标线,则鼠标光标变为中。按下鼠标左键,可以将光标 线移动到图表内的某个位置。光标位置的当前数值以与曲线对应的颜色显示在光标旁边的矩 形中。
- 下一节将详细说明各个绘图窗口。

5.6.9.1 位置绘图

工具栏 :	XYZ Mr	菜单栏:	窗口(Windows) → 位置绘图(Plot Positions)
--------------	-----------	------	------------------------------------

可以显示X轴和Y轴峰值位置以及X轴和Y轴中心位置随时间的变化。

工具栏图标	相关动作
	保存图表或图像:打开一个对话框,用来设置保存的图表或图像的属性。
	保存数据:打开一个对话框,用来设置保存的计算数据的属性。
×	清空所有绘图
	显示或隐藏图表中的网格:
A	自动调节开关
Ţ	显示或隐藏光标

5.6.9.2 功率绘图

工具栏: 就,菜单栏:窗口(Windows) \rightarrow 功率绘图(Plot Power)

可以显示光束质量分析仪所测总功率随时间的变化。

提示

Thorlabs光束质量分析仪的功率显示未针对波长校准,而是基于所用光电二极管的典型响应曲线和手动输入的波长(请看<u>光学配置/波长</u>33)。

工具栏图标	相关动作
	保存图表或图像:打开一个对话框,用来设置保存的图表或图像的属性。
	保存数据:打开一个对话框,用来设置保存的计算数据的属性。
×	清空所有绘图
	显示或隐藏图表中的网格:
A	自动调节开关
Ţ	显示或隐藏光标

5.6.9.3 高斯拟合绘图

菜单栏: 窗口(Windows) → 高斯拟合绘图(Plot Gaussian Fit)

此窗口绘制高斯强度值曲线(请看<u>计算结果</u>521),这些值显示了拟合的决定系数。

工具栏图标	相关动作
	保存图表或图像:打开一个对话框,用来设置保存的图表或图像的属性。
	保存数据:打开一个对话框,用来设置保存的计算数据的属性。
×	清空所有绘图
	显示或隐藏图表中的网格:
A.	自动调节开关
Ţ	显示或隐藏光标

5.6.9.4 环境数据绘图

此窗口可以记录X轴和Y轴中心位置,以及外接Thorlabs TSP01温度传感器读数随时间的变化。

温度坐标轴位于左侧(黄色曲线),中心位置坐标轴(蓝色和绿色曲线)位于右侧。

工具栏图标	相关动作
	保存图表或图像:打开一个对话框,用来设置保存的图表或图像的属性。
	保存数据:打开一个对话框,用来设置保存的计算数据的属性。
×	清空所有绘图
	显示或隐藏图表中的网格:
A	自动调节开关
Ţ	显示或隐藏光标

5.6.9.5 光束稳定性

工具栏: 🙆, 菜单栏: 窗口(Windows) \rightarrow 光束稳定性(Beam Stability)

此功能采用非常多样化的方式记录光束稳定性与时间的关系。通过启用多个绘图可以在图形显示 中获取累积的数据:

大多数光束稳定性特征以数字形式给出:

计数(Data Count):显示的测量结果的实际计数。

运行时间(Elapsed Time): 自上次开始稳定性测量以来的时间。

到参考点的最大距离(Max. Distance to Reference Position)以距离(X)、距离(Y)和径向距离(R)的形式给出。可以在设置对话框(见表格 [68]下方)中将参考位置定义为最早中心位置或中心位置数据群的中心。

工具栏图标	相关动作
	保存图表或图像: 打开一个对话框, 用来设置保存的图表或图像的属性。
	保存数据: 打开一个对话框, 用来设置保存的计算数据的属性。
	显示设置对话框(请看下方)
ņ	重置数据: 仅清空光束稳定性数据
×	停止并重新开始测量,清空所有累积的绘图数据
Š	设置缩放系数,使所有数据点都位于图表区域内
***	缩小到整个探测器区域
	显示或隐藏图表中的网格:
	将结果显示为点或网格

设置对话框

参考位置:用于计算光束稳定性的参考。可以设置为数据群的中心 (center of the data points cloud)或最早的数据点(oldest data point)。

提示

想要显示的最大数据点数量、达到最大数据点数量后的操作以及两个数据点之间的时间间隔都可以在<u>光束设置/随时间绘图参数</u>43中设置。

6 使用光束质量分析仪测量

使用扫描狭缝式光束质量分析仪BP209的一般准则

为了获得正确可靠的测量结果,建议遵循这些基本准则。

- 1. 利用底板的螺纹将光束质量分析仪安装稳固
- 2. 确保在允许的功率范围 [15] 内操作仪器。
- 3. 对准待测光束,使其垂直于光束质量分析仪的正面。
- 4. 最大程度地减少进入光束质量分析仪孔径的环境光。

注意

请勿将任何东西插入光束质量分析仪的孔径中!因为没有玻璃或其他保护屏保护细薄的狭缝箔片、 电机轴承和/或转筒。

防止灰尘或其他污染物进入孔径! 请保持光束功率低于限定的功率,以免损坏仪器!

为了准确测量功率:

- 1. 请输入正确的工作波长33。
- 2. 执行<u>功率校正</u>34 。

性能优化

在'设备选择'面板中选择BP209后,设备就以连续模式开始测量。如果要详细分析最后一张图像捕获的光束轮廓,可以停止连续测量模式。而且,停止连续采集图像数据后,用户与GUI的交互将更加流畅。

光束质量分析仪的测量速度取决于各种设备设置,比如扫描速率(转筒的旋转速度)、目标分辨率、 放大器的增益和带宽。同样,为查看测量结果而打开的子窗口数量,以及待计算的有效数字参数 的数量,都可能会降低可用的显示更新率,具体取决于PC的性能。

提示

- 为了获得准确的测量结果(功率值、M²结果),必须输入正确的波长。Thorlabs光束质量分析仪 未针对波长校正功率。功率计算基于所用探测器的典型响应度曲线和手动输入的波长(请看<u>光</u> <u>束设置/光学配置</u>33)。
- 2. 确保光束功率在指定的<u>功率范围</u>[15]。
- 3. 对准激光束,使其垂直于前面板。

6.1 操作仪器

光束质量分析仪连接到PC,并且已经按照<u>连接PC</u>加章节所述正确安装了驱动程序。

启动Thorlabs Beam Application 7.0。

启动初始程序后,GUI打开并显示光束设置面板、计算结果、2D重建和3D轮廓。子窗口可以通过菜单栏"窗口(Windows)"或主窗口工具栏中的图标打开和关闭。可以根据需要调整活动窗口的 大小和排列方式。

识别出的光束质量分析仪将自动连接,并开始连续采集图像。

如果启动应用过程中识别出多个设备,则将连接并启动第一个识别的设备。请看<u>启动应用</u>18部分了解选择不同设备的方法。

如果首次启动Beam软件,请验证<u>光学配置</u>33中的设置。有关硬件设置的更多详细信息,请看<u>狭</u> <u>缝式光束质量分析仪参数</u>36部分。

提示

退出BEAM软件时,会保存子窗口的配置。下次打开BEAM软件时,会恢复这些窗口以及它们上次的位置和外观。另外,重启BEAM应用程序时,将恢复最近的设备选择以及最近在设置面板中所做的设置。

e Control Options W	ndows View Help						HORLA
					-		2017-0
? 🕛 🎽 📼 🛛	😂 🎯 🔜 📴 🙆 🛎 🛯		🚨 💹 🖾 M² 🔝 🕰	Mark 📿 🏉			12:57
	m Settings 🏾 👫		Calculation Results		0	2D Reconstruction	_0
Optical Setup		104	Parameter	Value	E9	E 4000	
Wavelength	635.00 🗘 nm		Calculations Derived from Raw	Data			
Power Correction	Start 0.00 dB	0	Peak Position X	145.8		E 3000	
Beam Profiler Information	n		Peak Position Y	-79.8		- 2000	
Model	BP209-VIS/M	2	Centroid Position X	152.1	S .	1000	
Serial Number	M00307152	Lunk	Centroid Position Y	-75.7			
Driver Version	1.0	H	AD Saturation	83.9			
Firmware Version	0.60		Total Power	0.80	•	-1000	
CPLD Version	0.04		Ellipse (fitted)		Φ	2000	
lit Information			Ellipticity	98.5	0	-2000	
Resolution	1.2 µm		Minor Ellipse Diameter (13.5%)	2083.7		-3000	
Samples	7500		Major Ellipse Diameter (13.5%)	2115.9		4000 3000 -2000 -1000 0 1000	2000 3000 40
iit Beam Profiler Param	eter		Orientation	0.0	¥ Lin	¹ International Construction	
Gain Control	Automatic, 11, 12	•			8	3D Profile	_0
Bandwidth Control	125, 125						
Baseline Correction	Automatic, 3185.79, 3506.38				62		
Photodiode Bias	Off (
Aperture Width	9.0 ± mm				S		
Activo Slit Dair	5 * um				- AL	<u> </u>	
Scopping Mode							
Scan Pate	10.00 Torget 10.00 Op						
Scall Rate	10.00, larger 10.00, On						
Colsubtion Area	E-LBOI						
Australia Mada	Full ROI						
Averaging mode							
Number of averaged fra.	12.50 Prames						
Cip Level	13.50 • % of peak				Lin		
Hold Maximum		2					
Autoscale to Peak							
Correct Beam Width	V	_					
Reference Position	Sensor Center 4500 4500						
> Unit	μm, dBm, Celsius					N	
Plot over Time Paramet	er					13	
Max. Data Points	100000						
- Time Interval	0.00 s						
Action after Max Data	Discard First Point 🗢						

子窗口<u>2D重建</u>46以灰度或彩色刻度显示整个探测器区域上测得的强度分布,而<u>3D轮廓</u>46则是在第 三个维度(Z轴刻度)上绘制光束强度。数值计算结果显示在相应的<u>计算结果</u>52窗口。可以通过点击计 算结果窗口左上角的 []] 图标选择要计算的参数。

子窗口的所有内容,包括可用选项,都在子窗口43章节有相关说明。
6.2 Pass/Fail测试

计算结果面板包含Pass/Fail测试。

		C:	alculation R	esults				
U 13		Parameter	Value	Unit	Test		Min.	Max.
		Calculations Derived from Raw Dat	a					
n		Beam Width (4-Sigma) X	2739.23	μm	Pass	•	2600.00 🗘 🗸	2800.00 🗢
-		Beam Width (4-Sigma) Y	2664.65	μm	Pass	<	2600.00 🗘 🗸	2800.00 🖨
12		Peak Position X	14.55	μm			0.00	0.00
were the second		Peak Position Y	-77.29	μm			0.00	0.00
		Centroid Position X (Reference Position)	0.00	μm			0.00	0.00
-		Centroid Position Y	0.00	μm			0.00	0.00
		AD Saturation	76.83	%	Pass	≺	65.00 🔷 🗸	95.00 🗢
		Total Power	3.68	mW	💙 Fail	◄	4.00 🗘 🗸	5.00 🖨
		Ellipse (fitted)						
		Ellipticity	97.44	%	Pass	<	95.00 🗘 🗸	100.00 🗘
		Minor Ellipse Diameter (13.5%)	2592.75	μm	Pass	◄	2500.00 🖨 🗸	2700.00 🖨
	_	Major Ellipse Diameter (13.5%)	2660.94	μm	Pass	◄	2500.00 🖨 🗸	2700.00 🗢
	•	Eccentricity	22.49	%			0.00	0.00
	1	Orientation		deg			0.00	0.00
		Profile Measurement						
		Beam Width Clip X (13.5%)	2704.28	μm	Pass	◄	2600.00 🖨 🗸	2800.00 🗢
		Beam Width Clip Y (13.5%)	2625.48	μm	Pass	✓	2600.00 🖨 🗸	2800.00 🖨
		Fit Measurement						
		Gaussian Intensity X	92.19	%			0.00	0.00
		Gaussian Intensity Y	92.44	%			0.00	0.00
		Gaussian Diameter X	2659.29	μm			0.00	0.00
		Gaussian Diameter Y	2591.14	μm			0.00	0.00
		Bessel Intensity X	94.97	%			0.00	0.00
		Bessel Intensity Y	95.08	%			0.00	0.00
	_							

每个参数都可以设置一个最小值和/或最大值作为标准。

通过勾选**Min**.和**Max**.列前的复选框,可以将Pass/Fail测试标准设置为"不低于最小值"、"不高于最大值"或"介于最小值和最大值之间"。

测试结果将显示在Test列中,仅针对设置了测试标准的那些参数:

符合所选的测试标准;测试通过。 低于测试标准Min.;测试失败 高于测试标准Max.;测试失败

提示

请注意以下参数说明。

根据定义,椭圆光束具有长轴和短轴。对于Pass/Fail测试,根据椭圆的短轴和长轴直径输入最小值和最大值。按照上面的示例,"通过"范围是:

- 短轴直径必须在Min. = 2500与Max. = 2700 µm之间
- 长轴直径必须在Min. = 2500与Max. = 2700 μm之间

仅当同时满足两个条件时,测试才通过。

Pass/Fail测试设置与结果处理

工具栏图标	相关动作
	保存计算结果
6	锁定/解锁测试参数
	载入测试参数配置
	保存测试参数配置

保存计算结果会打开一个对话框,以输入文件属性(名称、格式、注释)。详情请看<u>计算结果</u>和部分。 锁定:默认情况下,Pass/Fail测试参数不被锁定。可以锁定以防修改Pass/Fail测试中包含的边界 和参数。此外,也可以通过输入密码保护锁定。

提示

密码只能输入一次,且不能更改!如有疑问,请联系Thorlabs寻求解决方案。

载入/保存测试参数配置

计算结果工具栏的载入和保存按钮可以加载和保存Pass/Fail测试的配置。

为了在下一次会话中自动重建Pass/Fail测试配置,请将参数保存到测试参数配置文件中。此文件将在下次启动应用程序时加载。如果保存了多个配置文件,则将自动加载最近保存的文件。 如要从文件加载测试参数,请点击"加载测试参数"按钮,然后选择测试参数配置文件。

6.3 保存测量结果

除了保存<u>计算结果</u>54, Beam软件还可以:

- <u>导出设备数据</u>73
- 打印窗口 76
- 保存测试报告 77

6.3.1 导出设备数据

如要将数据导出到以分隔符分离的文本文档或导出图像,请从菜单中选择'文件(File)→导出设备数据(Export Device Data)'。

🛎 Th	orlabs Bean	n 6.2 - BC10	6N-VIS/N	1	
File	Control	Options	Windov	vs Vie	
1 🖄 🛛	 Import Configuration Export Configuration 				
S 1	mport Devi	ce Data			
	Export Devic	e Data	1		
	Print Applica Print Active	ation Windo Window	ow Ct	rl+P	
1 2 - S	Save Test Pro	otocol			
0	Quit		Al	t+F4	

将打开一个对话框, 询问文件类型以及保存文件的路径。

🛎 Export Devi	🛎 Export Device Data 🛛 🕰				
File					
Folder	([user name] \Documents \Thorlabs \Thorlabs Beam				
Filename	DeviceData				
Format	Intensity values - Not for import (*.csv)				
Date	YYYY-MM-DD				
Time	hh.mm.ss 🔷				
✔ Index	1				
Preview	C:/Users/[user name]/Documents/Thorlabs/Thorlabs Beam/DeviceData_#001.csv				
	Save Device Data				

选择所需的路径和文件名

强度值文本矩阵

这是CSV(comma separated values)文件格式。注释"Not for import"仅与导入到Beam软件有关:不能导入数据文件重建光束轮廓。

强度值保存到带有文件头的文本矩阵中:

Thorlabs Beam			
Version: 7.0.408	2.298		
Date: 03.07.2017	·		
Time: 13:18:14			
Device: BP209-V	IS/M		
S/N: M00307152			
ScanRate [Hz]: 1	10		
Gain X: 11			
Gain Y: 12			
Bandwidth X [kHz	z]: 125		
Bandwidth Y [kH	z]: 125		
Base Level X [dig	jits]: 3186.32		
Base Level Y [dig	gits]: 3440.57		
Wavelength [nm]	: 635		
Pos X [µm]	Х	Pos Y [µm]	Y
0	-1.43e+01	0	-5.57e+00
120.933	-2.32e+00	120.933	-2.57e+00
241.866	4.68e+00	241.866	2.43e+00

连续保存

可以使用**导出设备数据(Export Device Data)**面板底部的连续保存功能,按序重复导出上述测量数据。此功能为每个数据集生成一个文件,并在创建的文件名后附加递增的索引号。起始索引号可以在1到10000之间自由选择。每次保存测量后,索引加1。

😆 Export Device Data	● 选择目标 文件夹(请看预览面板)
File	● 输入基本文件名
Folder Users/Admin/Documents/Thorlabs/Thorlabs Beam	● 选择导出格式
Filename DeviceData	● 添加日期和/或时间(选填)
Format Bitmap - Not for import (*.bmp)	 ●选中索引框并定义起始索引号
Date YYYY-MM-DD	● 选中" 连续保存 "框
Time hh.mm.ss	● 保存数据选择一个
✓ Index	→两个记录之间的时间间隔(1到10 ⁶ sec)
C:/Users/Admin/Documents/Thorlabs/Thorlabs Beam/DeviceData.bmp	→每隔n次测量记录一次(n = 1到10⁵)
Preview	● 在之后停止保存确定何时终止连续保存:
	→达到一定的文件大小(1到100 MB)之后
	→达到一定的记录时间(1到10 ⁶ sec)之后
Sequential Saving	→达到一定数量的数据集(1到105)之后
Save Data	● 占土"开始连续纪友"
With interval of 10 sec.	● 点山 川如廷续休行
○ Every 10 🚔 th measurement	
Stop saving after	注意
○ Reaching capacity of 100 🚔 MB.	对于连续保存,索引值会附加到所选文件名。确保勾选了
Reaching saving time of 60 sec.	"索引"复选框。
O Saving 100 ★ times.	
Start Sequential Saving	✓ Index 1
	b. 选中"连续保存(Sequential Saving)"框后,会自动启用索
X Close	一引。

6.3.2 打印窗口

选择'文件(File) \rightarrow 打印应用程序窗口(Print Application Window)'或'文件(File) \rightarrow 打印当前窗口(Print Active Window)'以打印相应窗口的截图。

如果安装了PDF生成软件,则屏幕截图也可以打印为PDF文件。

6.3.3 保存测试报告

如要将测试报告保存为pdf格式,请选择'文件(File) \rightarrow 保存测试报告(Save Test Protocol)'。

🔁 Save Test Protocol 💦

打开一个对话框:

🛎 Test Protocol	
Test Protocol File	
Path ents/Thorlabs/Thor	labs Beam/TestProtocol_LPS-635-FC_00.pdf
General Information	
Test Organisaton Name	
Test Organisation Adress	
Name of Tester	
User Text	
Laser Information	
Laser Type	
Manufacturer	
Manufacturer's Model Desi	ignation
Serial Number	
Test Conditions	
Laser Wavelength	
Profiler Azimuth Angle	
Temperature	
Operating Mode	
Laser Parameter	
Mode Structure	
Polarization	
Environment Conditions	
	Save X Close

这里可以输入其他信息,便于与测试报告一起保存。

测量结果将保存到压缩的测试报告中。它包含光束质量分析仪数据和设置以及<u>选择的数值计算结果</u>52〕。如果打开了2D重建和3D轮廓窗口,这些图表也将包括在内。

例如:

THORLADS

Laser Beam Measurement Test Protocol

Measurement Instrument: Date:

Test Organisation Name: Test Organisation Adress:

Name of Tester:

Laser Type: Manufacturer: Manufacturer's Model Designation: Serial Number:

Laser Wavelength: Temperature in K: Operating Mode: Laser Parameter:

Mode Structure: Polarization: Environmental Conditions:

Mo Se Sc Re

Pa

P Pe Ce AL To Be Ga Ga Ga Ga Ga Thorlabs Beam, version 7.0.4082.298 07-03-2017 13:36:08

Thorlabs Hans-Boeckler-Str. 6 D-85221 Dachau Germany

Max Mustermann

Pigtailed Laser Diode Thorlabs, Inc. LPS-635-FC 130326-061

635 nm 298 CW; Constant Current ILD = 46.7 mA Popt = 1 mW

SM NA Test Lab

odel:	BP209-V	IS/M
rial Number:	M003071	52
an Rate:	Hz	10
esolution:	μm	1.2
rameter:	Unit:	Result:
eak Position X	μm	-107.4
eak Position Y	μm	-71.4
entroid Position X	μm	-162.0
entroid Position Y	μm	-99.3
D Saturation	%	81.8
otal Power	dBm	0.89
eam Width Clip X	μm	2704.2
eam Width Clip Y	μm	2630.1
aussian Intensity X	%	92.8
aussian Intensity Y	%	93.0
aussian Diameter X	μm	2669.5
aussian Diameter Y	μm	2600.1

6.4 脉冲激光源

BP209光束质量分析仪也可用于测量脉冲激光束的轮廓,不过这类应用使用Thorlabs相机式光束质量分析仪BC106Nx会更合适。

可以使用与CW激光器相同的方法测量具有高重复率和短脉冲持续时间的脉冲激光源。飞秒激光器是一个典型实例,重复频率高达100 MHz,脉冲持续时间低于100 fs。

在这种情况下,光电二极管电流放大器由于带宽有限而"看不到"脉冲序列,把它当作CW信号。

如果重复频率的量级是数十kHz,则情况会有所不同。下面给出了几个示例,用于说明如何更好 地设置光束质量分析仪。

使用的激光系统

- Thorlabs LPS-635-FC带尾纤和可调准直器的激光二极管
- QCW模式的Thorlabs ITC4001控制器(frep = 1kHz, tpulse = 100µs)

扫描速率设置

扫描速率可以在2至20 Hz之间设置,因此不能设置为等于脉冲重复频率。在上述情况下,如果将 扫描速率设置为10Hz,则每100个脉冲扫描一次。由于重复频率高,因此还将显示之前和之后的 脉冲:

如果设置扫描速率,让脉冲在每次X轴和Y轴扫描时产生错位(即,脉冲重复频率不是扫描速率的 整数倍),打开记录最大值 ① 功能,软件将累积后续几个脉冲的峰值强度,最后显示光束轮廓一 一但是,这是多个后续脉冲的平均轮廓。

提示

用户应该决定何时可以考虑完成包络线形状的平滑处理。

带宽设置

建议手动设置带宽。这是测量CW信号时同样适用的准则——光束直径越小,所需的带宽就越高:因为狭缝扫描小光束直径时会导致光电二极管的电流脉冲较短。如果将带宽设置得太低,则会延迟光电二极管电流的上升沿,且下降沿会过冲。这就人为降低了峰值幅度。

下面130 µm光束的X轴轮廓说明了这一点:

在较大的光束直径下,带宽较高会导致噪声水平更高——这点在下面这个约3 mm的光束测量中可以看出:

增益指数

对于脉冲激光器,建议手动设置增益指数,以免放大器饱和。

6.5 刀口模式

使用5 µm狭缝对,可以采用标准的狭缝扫描法测量最小为20 µm的光束直径。对于直径小于 20 µm的光束,BP209提供与25 µm狭缝对配合使用的刀口模式。由于光束直径小于狭缝宽度, 因此在扫描过程中,光束的不同部分会通过狭缝并入射到光电二极管上。这样,测得的功率从零 增加到总光束功率,短暂地保持在此水平,随后又下降到零。

由于可以精确知道转筒的位置,因此可以以良好的分辨率重建X轴和Y轴方向上的原始光束轮廓。 刀口模式需要良好的光束对准——光束应尽可能靠近中心入射到探测器。此外,必须将光束质量 分析仪设置为最大分辨率,即最小扫描速度和最大带宽。

准备

				-	
💙 Optical Setup					
- Wavelength		635.00		-	nm
Power Correction		 Image: Second sec	Start		-0
🤝 Beam Profiler Inform	nation				
Model		BP209-VIS	/M		
Serial Number		M0030715	2		
Driver Version		1.0			
Firmware Version		0.60			
CPLD Version		0.04			
💙 Slit Information					
Resolution		0.123967			μm
Samples		7260			
💙 Slit Beam Profiler Pa	irameter				
Gain Control					
Gain Mode		Automatic		\$	
X Slit Gain		8		-	
Y Slit Gain		8		*	
V Bandwidth Control					
··· X Slit Bandwidth	I.	1000		†	kHz
Y Slit Bandwidth	n	1000		\$	kHz
W Baseline Correction					
Baseline Mode		Manual		\$	
X Slit Correction		3831.83		+	
Y Slit Correction		3831.83		-	
Photodiode Bias		On		\$	
Aperture Width		0.9		\$	mm
Active Slit Pair		25		\$	μm
Scanning Mode		Slit		\$	
V Scan Rate					
Scan Rate		2.04767			Hz
Target Scan Rat	e	2.00		*	Hz
Scan Rate Corre	ction	≺			
2 Hz	1 1	1 1		20 Hz	

- 将增益模式(Gain Mode)设置为"自动(Automatic)"。
- 将X轴和Y轴狭缝带宽(Slit Bandwidth)设置为"1000 kHz"。
- 将基线模式(Base Line Mode)设置为"手动(Manual)"。
- 将光电二极管偏压(Photodiode Bias)设置为"On"——可以缩短光电二极管的上升/下降时间。
- 将孔径宽度(Aperture Width)设置为"0.9 mm"——软件 仅使用探测器中心的Ø0.9 mm区域进行计算。
- 将有效狭缝对(Active Slit Pair)设置为"25 µm"。
- 将扫描模式(Scanning Mode)设置为"**狭缝(Slit)**",用于 对准。
- 将扫描速率(Scan Rate)设置为"2 Hz"。
- 启用扫描速率校正。

禁用高斯和贝塞尔拟合并放大轮廓。正确对准时轮廓的幅度最大并且顶端平坦。顶端平坦是由于 光束尺寸较小并且使用了25 μm狭缝(请看上面的屏幕截图)。

启用X轴和Y轴轮廓。

然后在设备设置对话框中将扫描模式切换到刀口模式:

Scanning Mode	Slit	
V Scan Rate	Knife Edge	

出现两个新的子窗口(它们最初可能会相互重叠),显示X轴和Y轴的重构刀口轮廓(绿色曲线),以 及使用常规狭缝扫描法获得的测量数据(暗黄色曲线):

数字结果窗口显示光束参数:

	Calculation Results		
U -9	Parameter	Value	Unit
-	Ellipse (fitted)		
n	Ellipticity	92.19	%
-	Minor Ellipse Diameter (13.5%)	11.67	μm
12	Major Ellipse Diameter (13.5%)	12.66	μm
ur e	Mean Ellipse Diameter (13.5%)	12.17	μm
	Eccentricity	38.73	%
	Orientation	90.00	deg
	Profile Measurement		
	Beam Width Clip X (13.5%)	12.00	μm
	Beam Width Clip Y (13.5%)	11.85	μm

7 测量光束质量(M²)

光束质量(Beam Quality)面板可以通过菜单栏的窗口(Windows)或点击工具栏[№]图标打开。

7.1 概括

M²值是衡量光束质量的重要指标。这个规格在激光行业中广泛使用,它的测量方法在ISO 11146 标准中也有相应的说明。它在描述真实激光束的发散度和聚焦能力(最小聚焦直径)方面特别有用。 有关光束质量的更多详细信息,请看M²理论[134]。

目的

许多激光器应用要求在最小光束直径下具有最大的光功率密度。除了聚焦光学器件外,光源本身的质量也是影响光束聚焦能力的主要因素。高光束质量是实现最佳聚焦能力的前提。

光束质量

根据ISO 11146标准执行的光束传播测量使用单个参数来描述光束质量,这个参数可以是**衍射极** 限倍因子M²或光束质量K = 1/M²(也称为*光束质量因子*或*光束传播因子*)。

虽然光束质量K与质量水平成正比(K=1最佳,K减小表示质量较差),但它的倒数M²(M²=1最佳,M增加表示质量较差)更常用。

请不要混淆光束质量(K≤1)和衍射极限倍因子(M²≥1)。

衍射极限

最小束腰直径的理论极限值do被称为**衍射极限**,它与波长λ和光束发散角θ相关,束腰不能比这个 值更小。

M²表示所测光束的衍射极限与理想高斯光束衍射极限的接近程度。数学公式表示为光束参数乘积 d₀*θ。对于质量较差的光束,乘积d₀*θ随因数M²增加。

$$d_{\rho}\theta \rightarrow M^2 d_0\theta$$

这里,d₀是焦点处的束腰,θ是发散角。 M²也可以表示为

● 所测光束的束腰直径d₀与理想高斯光束(TEM₀₀)的束腰直径之比(在相同的发散角θ下)。

所测光束的发散角θ与理想高斯光束(TEM₀₀)的发散角之比(在相同的束腰直径do下)。
 光束质量较差是光束不均匀等激光缺陷导致的,以致出现更高的横模。

如何测量光束质量

如果仅存在基模TEMoo(具有理想的高斯形状),则具有衍射极限束腰尺寸的理想光束质量(K=1, M²=1)是可能实现的。较高模态的存在会降低光束质量,从而导致束腰直径较大。通常,非高斯 光束轮廓易于发现这种失真现象。

但是在许多情况下,多个高阶模式以一定方式分布,也产生近似高斯形状的光,而光束本身的光 束质量却很差。

以下示例显示了具有近乎完美的高斯形状的光束,但同时具有多种模式,以至于光束质量较差 M² = 1.79。

提示

近高斯形状并不表示光束质量高!因此,光束质量分析仪单次测量的光束形状无法正确表征光束 质量。

虽然单次光束轮廓分析结果不能衡量光束质量,但Thorlabs光束质量分析仪是可以用于精确测量 光束质量的。这需要根据ISO11146标准测量,通过测量光束传播特性实现。主要目的是测量光 束直径d(z)沿光束传播轴z的变化。

光束质量分析仪安装在由自带软件控制的位移台上。在z轴的几个位置测量并存储光束直径和其他参数。

除了找到**衍射极限倍因子M²**之外,Thorlabs光束传播测量还确定了光束的以下参数:

- 束腰宽度dox, doy
- z轴束腰位置Zox, Zoy
- 瑞利范围ZRx, ZRy
- 发散角θx,θy
- 腰斑的不对称性
- 发散角不对称性
- 像散

提示

Thorlabs的光束质量测量工具只能处理连续波光源和某些脉冲光源!更多有关脉冲激光源的信息,请看<u>脉冲激光源</u>[79]。

7.2 硬件扩展装置

Thorlabs提供位移台扩展装置和包含位移台和光束质量分析仪的完整M²测量套件。

产品型号	描述
M2MS	M2测量系统扩展装置
M2MS-AL	M2测量系统扩展装置,250-600 nm (铝膜反射镜)
M2MS-BC106UV-AL	M2测量系统,带BC106N-UV,250 - 350 nm
M2MS-BC106UV-AL/M	M2测量系统,带BC106N-UV,250 - 350 nm,公制
M2MS-BC106VIS	M2测量系统,带BC106N-VIS,400 - 1100 nm
M2MS-BC106VIS/M	M2测量系统,带BC106N-VIS,400 - 1100 nm,公制
M2MS-BP209VIS	M2测量系统,带BP209-VIS,400 - 1100 nm
M2MS-BP209VIS/M	M2测量系统,带BP209-VIS,400 - 1100 nm,公制
M2MS-BP209VIS-AL	M2测量系统,带BP209-VIS,250 - 600 nm
M2MS-BP209VIS-AL/M	M2测量系统,带BP209-VIS,250 - 600 nm,公制
M2MS-BP209IR	M2测量系统,带BP209-IR,900 - 1700 nm
M2MS-BP209IR/M	M2测量系统,带BP209-IR,900 - 1700 nm,公制
M2MS-BP209IR2	M2测量系统,带BP209-IR2,1000 - 2700 nm
M2MS-BP209IR2/M	M2测量系统,带BP209-IR2,1000 - 2700 nm,公制

提示

配有铝膜(AL)反射镜的系统专用于UV光束质量分析仪,因为标准带保护层银膜的反射镜在400nm 以下反射率明显降低。

7.3 M2MS工作原理

Thorlabs M2MS M²测量系统是一款设计紧凑的仪器,包括测量光束质量所需的所有组件:

- ① 光束质量分析仪(下图中未显示)
- ② Thorlabs DDSM100线性位移台
- ③ 镀不同增透膜的透镜
- ④ 透镜定心组件(X-Y移动安装座)
- ⑤ 2块倾斜安装的反射镜

对准激光器(下图中未显示)

⑥ 集成控制电子设备(位移台控制器, USB 2.0集线器和对准激光器的驱动器)

待测光束透过聚焦透镜(3),打在两个倾斜安装的反射镜(5)上,然后离开外壳射向光束质量分析仪的入射孔径(1)。位移台由控制软件逐步移动,以这种方式改变聚焦透镜和光束质量分析仪之间的路径长度。使用两个反射镜让位移台的最大行程(100 mm)增加了一倍,因此最终的路径长度范围为200 mm。选择透镜的焦距时,使束腰接近位移台的中间。

M²测量期间,位移台沿光束传播方向逐步移动。在每个位置都测量光束的几何形状。根据测量结果,软件可以计算光束参数和光束质量。

反射镜出厂时已对准;无需重新调整。

为了精确对准光束,设备提供了对准激光器。请看光束对准 saf 部分了解详情。

7.4 光束直径要求

光束质量测量基于确定聚焦光束的束腰直径和束腰前(后)光束会聚(发散)程度。 理想的高斯光束具有最佳的聚焦能力,因此可能达到最小光束直径且M²=1。最小绝对束腰直径随 透镜焦距的增大而增大。换句话说,对于给定的焦距,束腰直径越小,M²越接近1。

最小束腰直径随波长而增加(在恒定的M²下)。

光束质量分析仪的性能限制了光束直径测量的范围,请看<u>技术数据</u> 动。初始(未聚焦)光束直径不得超过可测量的最大光束直径,束腰直径必须大于最小光束直径。下图说明了在M²=1和M²=2时,对初始光束直径的要求随波长的变化(随M2MS系统提供焦距为250 mm的透镜):

7.5 M²测量系统扩展装置

M²测量系统扩展装置兼容Thorlabs的所有BP100、BP209和BC106系列光束质量分析仪。我们提供相应的安装转接件。

M2MS MP测量系统扩展装置,带用于BC106和BP209光束质量分析仪的转接件

7.6 带BP209狭缝式光束质量分析仪的M2测量系统

M2MS-BP209测量系统特性:

- 准确测量M²
- 测量发散角、束腰直径、瑞利范围和像散
- 兼容CW和准CW脉冲激光源
- 测量周期短
- 完全符合ISO11146标准

7.7 搭建

M2MS测量系统是经过出厂对准的完整系统。光束分析仪转接件可将光束质量分析仪的入射孔径稳固且可重复地对准M2MS。这样可以简化搭建过程。

提示

强烈建议使用M2MS配件盒中随附的四个导轨夹块将M2MS正确固定到光学平台上。为了确保安装正确,请先从M2MS底板上卸下橡胶脚。

运输锁和止动闩

为了避免运输过程中损坏位移台,我们在发货时已将其锁定。给位移台通电之前,必须卸下运输锁;如果需要再次运输,必须重新安装运输锁。此外,DDSM100位移台通过螺线管控制的止动闩固定在初始位置,止动闩是图片中的左挡块(2)。此挡块可在断电时固定位移台,通电时释放位移台。

拆下运输锁

- 1. 使用0.05英寸六角扳手(M2MS随附)拆下固定顶盖的4颗螺丝,然后卸下顶盖。
- 2. 使用配件盒随附的3 mm球形起子拧下固定红色挡块(1)的M4螺丝,然后拆下挡块。将挡块和固定螺丝放在安全的地方。

1 - *运输锁* 2 - *电磁端点闩*

3. 盖上M2MS的顶盖。

安装运输锁

- 1. 关闭电源。
- 2. 使用0.05英寸六角扳手(M2MS随附)拆下固定顶盖的4颗螺丝,然后卸下顶盖。
- **3**. 如下图所示掰动止动闩,并将位移台的平台靠在左挡块上。然后安装运输锁;先不要拧紧 固定螺丝。

4. 推动平台抵住左挡块, 逆时针旋转运输锁, 然后拧紧螺丝。

5. 放回顶盖并使用4颗螺丝固定。现在,M2MS已可以运输。

7.7.1 安装光束质量分析仪

如果购买的是包含光束质量分析仪的完整的M2MS测量系统,则可以跳过本节。而如果是单独购买的扩展装置,则请按照以下说明安装。

将BC209-xxx(/M)安装在BP209转接件上:

先将BC209-xxx贴紧转接板前挡片,使用提供的M6(BP209-xxx/M)或1/4英寸(BP209-xxx)六角螺丝固定。

再通过M2MS底板上的定位销将安装好的光束质量分析仪放入凹槽中:

最后使用提供的M4x10六角螺丝固定。

7.7.2 连接PC

M2MS包含带位移台控制器的集成控制电子设备、USB 2.0集线器和对准激光器的电流源。

注意!

强烈建议仅使用提供的USB电缆将光束质量分析仪和控制电脑连接到M2MS。这些电缆是在符合 所有USB 2.0规范的前提下经过挑选和测试的。与旧版操作系统相比,Windows[®] 7、8.1和10操 作系统对偏离本规范的容忍度较小。

使用非随附的USB 2.0电缆可能会导致USB连接不稳定。

注意

安装Beam软件之前, 请不要将M2MS连接到计算机

注意!

将M2MS连接到电源之前,请确保已拆下运输锁 जी! 否则,位移台驱动可能会损坏!

- 1. 将电源线连接到交流电源,并将其输出端插入直流插孔(7)。
- 2. 使用提供的带转角USB 2.0电线将光束质量分析仪连接到USB集线器其中的一个输出口(3)。
- 3. 打开M2MS(8)。绿色的通电(Power On)指示灯点亮。
- 4. 使用随附的3 m长USB 2.0电缆将M2MS连接到PC;暂时不要启动BEAM软件。
- 5. PC的操作系统识别出所连的新硬件并执行驱动程序安装:

Driver Software Installation		×
Your device is ready to use		
AMD USB 2.0 MTT Hub USB Test and Measurement Device (IVI) APT USB Device Thorlabs BP2 Multi Slit Beam Profiler	Ready to use Ready to use Ready to use Ready to use	
		Close

提示

前三个条目("AMD USB2.0 MTT Hub"、"USB Test and Measurement Device (IVI)"和"APT USB Device")是M2MS扩展装置的硬件组件。

6. 启动Beam软件。它应该自动连接到光束质量分析仪和位移台。这可以在光束设置(Beam Settings)面板中看到:

Beam Settin	gs	TX
Optical Setup		
V Beam Profiler Information		
··· Model	BP209-VIS/M	
···· Serial Number	M00307152	
Driver Version	1.0	
Firmware Version	0.60	
CPLD Version	0.04	
Slit Information		
Slit Beam Profiler Parameter		
Calculation Parameter		
Translation Stage Control		
Model	DDSM100	
Serial Number	M67851570	
···· Actual Position	200.00	mm
Target Position	0.00	mm
···· Increment	1.00	mm
···· Velocity	200.00	mm/s
0	200 mm	

7. 启动Thorlabs Beam软件后,位移台完成初始化并自动归位。也就是说它在**位移台选择(Stage** Selection)选项中被识别出来,并移动到200 mm的位置(如果没有到这个位置的话)。这可能需 要几秒钟。点击**设备选择(Device Selection)**窗口中的"刷新位移台列表(Refresh Stage List)"按 钮,可以手动强制进行初始化。识别位移台并读取序列号之后,双击DDSM100(/M)按钮。

7.8 准确测量M²

开始测量光束质量之前,待测激光束需要对准M2MS测量系统。在位移台的每个位置处,光束中心都应对准光束质量分析仪孔径的中心,这一点很重要。请仔细阅读以下部分并按照说明操作。

7.8.1 光束对准

为什么要对准光束?

光束质量分析仪具有确定的入射孔径,因此移动位移台时,必须确保激光束保持在孔径内。理想 情况下,在位移台移动期间,光束中心保持在孔径中心——这是正确测量光束质量的前提。

M2MS测量系统出厂时已经过对准。完全平行于位移台移动方向进入M2MS的光束在位移台移动 期间将保持在光束质量分析仪孔径的中心。换句话说,就是光束对准仅取决于光源的位置。通常 情况下,光源的输出光束是开放的。为了将待测光束引导到M2MS中,需要两个可调反射镜的组 合,Thorlabs提供多种此类产品。

在软件向导的引导下,光束对准过程分为三个步骤:

- 1. 粗略对准 写: 通过辅助激光器(随货附带)确定待测激光输出孔径的正确位置。
- 2. <u>光束对准</u>[10]: 无需聚焦透镜的情况下,待测激光的对准使光斑偏移和指向角最小。
- 3. 对准聚焦透镜 104 以使光斑偏移和指向角最小。

7.8.1.1 粗略对准

对于粗略对准,Thorlabs提供的配件盒中附带对准激光器。这个步骤是将对准激光器安装在 M2MS上,替代光束质量分析仪。让出射光束通过光束质量分析仪孔径的中心进入M2MS并平行 于位移台移动方向。对准光束是反向定向的一一实际上,它离开光束质量分析仪,被位移台的两 个反射镜反射到激光源的出射孔径中心(请看M2MS工作原理)。

警告

使用该激光器时请小心!

- 从M2MS底座上拆下光束质量分析仪及其转接件。
- 将对准激光器安装到光束质量分析仪的位置,并将其3.5 mm的插头插入<u>对准激光器的输出接</u> □(2) 94 。
- 确保M2MS已打开并连接到控制电脑,Beam软件已启动,位移台已初始化。
- 从磁性支架上取下聚焦透镜。
- 打开对准激光器。
- 对准光学系统, 使对准激光器的光斑对准光源的中心。

BP209

7.8.1.2 精确对准

粗略对准后,需要使用M²测量面板的对准(Alignment)功能精调待测光束。这个分两个步骤。

准备

- 关闭对准激光器,并换上光束质量分析仪。
- 拆下聚焦透镜(请看<u>M2MS工作原理</u>厨)章节图纸中的③)。
- 将光束质量分析仪连接到M2MS的一个USB输出口(连接PC ⊶章节中的③)。
- 确保可以识别位移台并初始化。如果不能,请按<u>刷新位移台列表按钮</u> ☞ 识别出位移台后,双 击DDSM100按钮。位移台初始化并移动至200 mm的位置。
- 启动待测激光器。
- 从菜单"窗口(Windows)" → "M²光束质量测量(M² Beam Quality Measurement)"或点击^{M²}按钮 打开M²子窗口,然后切换到对准选项。

指示灯和图标说明

	启动对准向导
1	启动聚焦透镜对准向导
Z [mm]	此框显示位移台的实际位置;初始化后 = 200 mm。
Position 1 (2) [mm]	这里可以输入位移台移动时左右两端的位置。
01 02	左右两端位置的标记。除了用数字输入位置,也可以拖动标记来移动。
	点击这些拍摄(capture)按钮,位移台移动到设定的位置(如果尚未到达此 位置),并拍摄光束中心位置(琥珀色十字准线)。截图将一直保留到位移 台恢复到恰当位置为止。
	此按钮启动位移台循环移动模式,让位移在位置1和2之间连续移动。可 以输入在两端位置的停留时间。在循环模式下,软件会自动拍摄左右两 端位置的光束中心(黄色十字准线)。
停留时间	输入所需的时间[秒]。点击图标区禁用停留时间。
+	实际光束位置中心的十字准线。
	探测器中心的十字准线。
光斑偏移	是在位置2和1 [mm]之间X(Y)轴方向上的中心偏移。第二次拍摄后方框内 会显示第一个数值。
指向角	是光轴与位移台移动方向之间在X(Y)轴方向上的角度[°]。第二次拍摄后 方框内会显示第一个数值。
✓ 对准成功指示	 对准失败 对准到可以正确测量光束质量(偏移 < 0.65 mm,指向角 < 0.35°) 对准良好(偏移 < 0.35 mm,指向角 < 0.15°)
AD 饱和度 (AD Saturation)	显示光束质量分析仪AD转换器的电流饱和度。为了实现正确的光束对准,该值必在40-95% (BP209)/20-95% (BP10x)之间。数字字段右侧的绿灯表示在"良好"范围。

7.8.1.2.1 M²光束对准向导

提示

请确保旋转安装座竖直放置,以使BP209的Y轴位于垂直方向。

请按启动向导(Start Wizard)按钮 ●。系统将要求您选择是要测量M²还是发散角。请做出选择:

启动向导:

- 为了对准成功,必须调整光功率水平,使AD饱和度介于40-95%之间。数字字段右侧的绿灯表示在"良好"范围。对准期间,此状态不得更改!
- 初始化后,位移台位于Position 2 (200 mm)。点击Position 2的拍摄按钮 ——拍摄中心, 十字准线颜色变为琥珀色。由于此时由蓝色十字准线标记的实际光束中心位于相同的位置, 因此准线的颜色显示为白色:

M ²	Beam Quality	
Alignment	M ² / Divergence Measurement	
	Manual Alignment	
	Z [mm] 👩	Position 1 [mm] 0.00 🗎 🖻
<u>1</u>	200.00	Position 2 [mm] 200.00
		Dwell Time [s]
4		Beam Displacement Y [mm]
		0
		Pointing Angle Y [degree]
		0
	Beam Displacement X [mm]	AD Saturation [%]
	Pointing Angle X [degree]	62.73
i	rrior to start this wizard, please make sure that the coarse alignment of your laser source was ex leam Profiler; do not install the lens yet. This wizard allows to move the stage between two positi soop mode (▶). Observe the beam shift and minimize Beam Displacement and Pointing Anglepara ellow condition.	ecuted. Replace the alignment laser with the ons by clicking the icons 100 or by using the meters in order to achieve green or at least
		Help Next Cancel

Position 2拍摄的中心

● 点击Position 1拍摄按钮(0 mm)。位移台移动到Position 1,并拍摄第二张中心位置:

Position 1拍摄的中心

● 现在,光斑偏移和指向角的数值都已显示出来。

● 调节您的激光源对准光束位置。随后点击position 1和2的拍摄按钮,观察对准并优化,直到 四个对准标准都满足(灯泡必须至少为黄色):

对准良好的光束位置

 ● 位移台在两个停止位置之间的移动可以通过软件自动控制。只需按下循环按钮 ▶并输入一个 适当的停留时间值即可。位移台开始循环移动,在停止位置停留指定的时间。停留期间可以 重新对准。但请记住,对准指示数值仅在下一此运动之后才会更新。

	Ber	im Quality			
Alignment	M ² / Divergence Measurement				
٩	Manual Alignment		ę	Position 1 [m	m] 0.00 🔹 📖
<u>+</u>				Position 2 [mi Dwell Time [s]	200.00 + m 2 + X
				Doom Circ	lecoment V (m-1
4				Beam Disp	acement y [mm]
			-	0.0	
				Pointing Ar	igle Y [degree]
	Beam Displacement X [mm]	-0.0		AD Saturat	ion [%]
	Pointing Angle X [degree]	-0.1	0	66.66	0
i	Prior to start this wizard, please make sure that the coarse Beam Profiler; do not install the lens yet. This wizard allows oop mode (). Observe the beam shift and minimize Bea wellow coachings.	e alignment of yo s to move the st m Displacement	our laser source was exe age between two positio and Pointing Angleparam	cuted. Replace the al ns by clicking the ico veters in order to achi	ignment laser with the ns in or by using the eve green or at least
	Yenow construct.			Help	ext Cancel

对准移动循环

- 点击 按钮终止循环。
- 完成之后,点击**下一步(Next)**以继续。

7.8.1.2.2 对准聚焦透镜

完成光束对准之后,向导会指导您对准聚焦透镜。首先,拍摄没有透镜时的光束位置,然后点击'下一步(Next)'。

Focusing Lens Alignment	Focusing Lens Alignment
Capture Reference	Capture Reference
Centoid Difference x [mm]	Centoid Difference x [mm] 0.00 Centroid Difference y [mm 0.00
AD Saturation (%) 66.80	AD Saturation [%] 66.85
L Next Cancel	L Next Cancel

 确认聚焦透镜的支架居中(CXY1平移安装座上的刻线与透镜支架上的刻线应对准),然后将 已安装的聚焦透镜放回磁性支架。

确保AD饱和度仍处于绿色或至少黄色状态。

观察实际的光束位置,并利用透镜支架的X-Y平移安装座调节,减小与参考位置的差异,直 到指示器变为绿色或至少黄色。

P Focusing Lar	e Alignmeni 📃 🥏	Focusing Lens Alignment
	Clear Reference	Capture Reference
	Centoid Difference x [mm]	Centoid Difference x [mm]
	0.32 🖉	0.00
	Centroid Difference y [mm	Centroid Difference y [mm
	0.25 😑	0.00
	AD Saturation [%]	AD Saturation [%]
	83.71	83.17
Insert a suitable lens into the lens holder. Verify that the AD the Centroid Differences X and Y between the reference and holder until green or at least yellow condition is reached. W	V Saturation parameter is in green or at least yellow position. Minimize and the actual beam position using the X-7-translators of the lens hen done, click Next. Next Cancel	Insert a suitable lens into the lens holder. Verify that the AD Saturation parameter is in green or at least yelow position. Minimize the Centroid Differences X and Y between the reference and the actual beam position using the X-4-translators of the lens holder until green or at least yelow condition is reached. When done, dick Next. Next Cancel

- 然后点击'下一步(Next)'完成聚焦透镜对准。
- 选择是否要继续M²测量:

7.8.2 M²测量面板

本节涉及M²测量及其设置。点击**光束质量测量**窗口的 M²/Divergence Measurement , 并

,进入M²测量部分。

M²面板分为6个子面板:

1. 工具栏:

M 2	M ² 设置	打开M²测量的 <u>设置</u> 107
	自动保存数据	M²测量期间保存光束质量分析仪数据
	开始/停止	开始/停止M²测量
M²	M ²	切换到M²测量
θ)	发散角	切换到发散角测量
	保存数据	成功测量M ² 后启用此按钮,且可以保存作图数据。
	网格	禁用/启用图中的网格
	PDF测试报告	将M²测量结果保存到PDF文件中

2. M²图表

测量数据绘制在图表中。图表上方的4个按钮可以配置显示:光束直径X'(Y')(Beam Diameter X'(Y'))按钮显示/隐藏各个位置的测量数据显示,而双曲线拟合(Hyperbolic Fit X'(Y'))按钮显示/隐藏测量数据点的曲线拟合。

测量完成后,在图表下方显示X轴和Y轴的M²结果。左侧有一个指示图标,显示测量是否成功且符合ISO标准。也可以查看M²故障排除 The 部分。

工具栏和图表之间红色方框标记的按钮 将图表扩展到整个M²窗口。

3. 数值结果

此区域中会详细显示光束质量的测量结果。请看<u>M²测量结果</u>加部分了解更多详情。

4. 位置栏

M²图表下方的位置栏显示位移台的实际位置,如之前在对准选项所示。

5. 个别数据点

在此子面板的标题中选择想要测量的数据点的**序号(Number)**。对于选择的点,会显示位移台位置和光束的X轴和Y轴轮廓。右表**所选数据点的计算结果(Calculation Results of the Selected Point)**,包含以下信息:

参数	释义
Position	以mm为单位显示位移台的Z轴实际位置。
Azimuth Angle [deg]	显示的值无关紧要,始终等于 0° 。
Ellipticity	拟合椭圆光束的椭偏度(请看 <u>应用说明</u> 147)
Beam Diameter X' [µm] Beam Diameter Y' [µm]	根据 <u>设置</u> 赋, 基于高斯拟合、近似椭圆或光束宽度限幅(1/e ²)显示光束 直径。坐标系始终与光束质量分析仪前面板上标记的狭缝坐标相关。
Centroid Position X'	光束中心位置与光束质量分析仪前面板上标记的狭缝坐标相关。

Centroid Position Y

6. 状态栏

- 测量进度条
- 所测数据点总数
- 用于M²测量的光束宽度设置
- 延迟线:测量范围(开始位置和停止位置之间的差异)
- 光束质量计算的波长设置
7.8.3 M²测量设置

为了成功可靠地执行测量,恰当的测量设置至关重要。点击⁷⁷⁷进入M2测量设置对话框。

🙀 Beam Quality Se	ttings		×	
Beam Width for Ma	Measuremen	t		
O Use Gaussian	Diameter for	measurement		
Beam Width C	Clip (1/e²)			
O Approx. Ellips	e (Clip Level a	it 1/e²)		
✓ Correct Beam	Width			
Scan Method				
Normal Scan				
O Coarse Scan				
Measurement Para	meter			
Wavelength [nm]		635.00	* *	
Measurement Rang	ge			
Start [mm]	0.00			
Stop [mm]	200.00		▲ ▼	
Min. Data Points	20			
Timeout [sec]	15			
Stage Position Afte	er Scan			
Stay at the La	ast Position			
O Go to Waist P	O Go to Waist Position X			
O Go to Waist Position Y				
Unit for Angle				
Degree (deg)	Degree (deg)			
O Milliradian (mrad)				
eset			K Close	

光束宽度(Beam Width)

高斯直径(Gaussian Diameter): 确定光束宽度之前,使用高斯曲 线拟合光束轮廓。高斯拟合可以 减少噪声和/或不稳定的光束形状 对结果的影响。

Beam width for M4 Measurement
🔘 Use Gaussian Diameter for measurement
Beam Width Clip (1/e ²)
O Approx. Ellipse (Clip Level at 1/e²)
Correct Beam Width

光束宽度限幅(1/e²):这是ISO标准11146-3中指定的值。如果标准的光束质量分析仪操作使用了不同的限幅水平,则会被M²测量初始化覆盖。

校正光束宽度(Correct Beam Width):默认启用此选项。由于狭 缝宽度有限,因此出现了所谓的卷积误差(模糊的光束形状),光 束直径较小的位置尤其如此,这样会人为增加光束宽度。由于这 种卷积误差是系统性的,因此可以算出并消除。此功能可提高测 量准确度,测量窄光束时尤其如此。

测量参数(Measurement Parameters)

为了正确测量M²,必须设置波长。 如果激光波长未知,请使用光谱仪 测量波长。

Measurement Parameter				
Wavelength [nm]		635.00		
Measurement Range				
Start [mm]	0.00		A	
Stop [mm]	200.00		▲	
Min. Data Points	10			
Timeout [sec]	15		A V	

注意

请不要使用激光的标称波长,而要使用实际(测量)值!此输入的准确性会显著影响测量的准确性。

测量范围

测量范围确定开始位置和停止位置之间的距离,换句话说,就是测量过程中位移台的行程。行程范围可以从5 mm到位移台的整个长度。

最小数据点(Min. Data Points)是将要测量的Z轴位置(最小)数量。实际数量还取决于扫描方法。

超时时间(Timeout)是直到可以从光束质量分析仪中检索到有效数据为止的等待时间(例如在慢速 移动的情况下)。

扫描方法(Scan Method)

Scan Method -

Normal Scan

Coarse Scan

软件提供两种不同的扫描方法,即正常扫描 (Normal Scan)和粗略扫描(Coarse Scan)。

粗略扫描仅将位移台从Start位置移动到Stop位置 (或反向,具体取决于开始测量之前的位置)。

M²测量记录光束宽度的数量等于输入的数据点(Data Points)数量。

正常扫描遵循符合ISO标准的测量。ISO标准要求

"...*至少要执行十次测量。大约一半的测量值应分布在束腰两侧的一个瑞利长度内,且大约一半的 测量值应分布在距束腰的两个瑞利长度以上。*" 第一次运行正常扫描是针对输入的**数据点**执行的,换句话说,就是像粗略扫描一样。计算初步瑞 利长度是为了评估测量的数据点是否足以满足ISO标准要求。如果是,则应用双曲线拟合。如果 不是,则第二轮运行将在两侧的瑞利长度内和/或超过瑞利长度的两倍添加其他测量值。

对于M²测量,强烈建议运行正常扫描。粗略扫描适合初次估算束腰位置或其他初步测量。

重置(Reset)

Reset 恢复M² 设置的默认设置:

参数	默认设置
光束宽度	光束宽度限幅(1/e²)
波长	635 nm
超时时间	15 sec
Start	0 mm
Stop	200 mm
最小数据点	10
扫描方法	正常扫描

设备设置(Device Settings)

请务必将光束质量分析仪的增益和基线校正设置为Auto;带宽为125 kHz(请看<u>狭缝式光束质量分</u> 析仪参数[37])。

7.8.4 保存M²测量结果

除了标准功能"<u>保存M²测量结果</u>¹, 在M²测量过程中, Thorlabs Beam软件还提供<u>自动保存光束</u>轮廓数据¹,

7.8.4.1 保存M²测试结果

光束质量测量结果可以通过两种不同的方式保存:

1. 保存测试结果

■将测量数据另存为CSV(默认)。打开保存测试报告示对话框,选择所需的路径、文件名和文件 格式(csv、txt或xls),填写所需的字段,然后点击保存。下面是一个示例:

```
Thorlabs Beam M<sup>2</sup> Data Export
Date MM-DD-YYYY:07-04-2017
Time HH:MM:55;15:25:28
Beam Profiler
Model; BP209-VI5/M
Serial Number; M00307152
Profiler Azimuth Angle ; [deg];
Wavelength; [nm]; 639
Beam Quality Measurement;M2
Beam Diameter Measure Method; Beam Width Clip (1/e<sup>2</sup>)
Parameter; Unit; Result;
M<sup>2</sup>x'; ;1.10;
M<sup>2</sup>y'; ;1.06;
M<sup>2</sup> mean; ;1.08;
Beam Waist Position X';mm;99.18;
Beam Waist Position Y';mm;98.64;
Beam Waist Diameter X';µm;102.12;
Beam Waist Diameter Y';µm;98.44;
Rayleigh Length X';mm;11.62;
Rayleigh Length Y';mm;11.28;
Divergence Angle X';deg;0.503;
Divergence Angle Y';deg;0.500;
Divergence Asymmetry;%;0.993;
Z;X';Y';
50.00;442.44;432.30;
55.00;401.09;393.12;
60.00; 356.49; 350.27;
65.00; 315.75; 308.81;
70.00;273.76;267.11;
75.00;235.34;228.85;
80.00;202.04;193.67;
85.00;167.95;159.24;
89.23;139.13;131.58;
90.00;132.37;126.68;
90.89;127.12;120.98;
92.54;117.51;113.03;
94.19;112.01;106.65;
95.00;107.23;102.03;
95.84;106.23;99.31;
97.50;99.98;95.68;
100.00;95.96;95.71;
105.00;110.83;108.04;
110.00;138.65;140.42;
115.00;173.78;173.58;
120.00;212.60;211.44;
125.00;251.24;254.66;
130.00;293.26;295.72;
135.00; 333.84; 335.99;
140.00; 372.65; 375.89;
145.00;413.60;413.90;
150.00;455.63;453.68;
```

2.保存测试报告

♥ 将测量数据另存为*.pdf文件。打开保存测试报告 → 对话框,填写所需的字段,然后点击保存。 M²测量结果将出现在PDF文档中,如下例所示:

M² Test Protocol

General Information:	The test has been performed in accordance with ISO 11146.		
Date (MM-DD-YYYY):	07-12-2017		
Time:	09:44:11		
Test Organisation:	Thorlabs GmbH		
Performer:	Beam Prof	iler	
	T		
Information Concerning the	e lested Laser:	D Lassa Diada	
Laser type:	Pigtailed F	P Laser Diode	
Laser Manufacturer:	I nonabs in	c.	
Model Designation:	LPS-035-F	C	
Senal Number.	140416-51		
Test Conditions:			
Laser Wavelength:	635 nm		
Operating Mode:	CW		
Information Concerning Te	sting and Evalu	lation:	
Thorlabs Beam Version 7.0.4	097 310		
Test Equipment:	BP209-VIS	/M	
Measurement Method:	Clip Level	at 1/e ²	
Model:	BP204.VIS/M		
Serial Number	M00307152		
Profiler Azimuth Angle:	0°		
Wavelength:	635 nm		
Scan Range:	0.00 - 200.00 mm		
Min. Data Points:	10		
	11-14	Death	
Parameter:	Unit:	Result:	
M ^e X		1.10	
		1.06	
Mr mean		1.08	
Beam Waist Position X	mm	98.99	
Beam Waist Position Y	mm	98.24	
Beam Waist Diameter X	μm	102.00	
Beam Waist Diameter Y	μm	101.49	
Rayleigh Length X	mm	11./1	
Rayleigh Length Y	mm	11.98	
Divergence Angle X	deg	0.50	
Divergence Angle Y	deg	0.49	
Divergence asymmetry	%	0.97	

7.8.4.2 M²测量期间保存光束质量分析仪数据

Thorlabs Beam Software V7.0有一项新功能: M²测量期间, 位移台每个位置处的光束轮廓计算结果、设备数据和M²测量结果可以自动保存。

如要配置此自动数据导出,请点击M2面板左侧工具栏中的 图标。打开一个对话框:

101-	M2 - Config	gure Automatic Data Expo	rt 💌			
Γ	Data Export					
	 Disabled 	ł				
	Enabled					
	✓ Disal	ble after next measurment			1	
ſ	Export option	ns	Text Format (*.txt)	format /* csu)		
	✓ Beam pr	ofile calculation results	Excel Format (*.xls)	offiliat (i.csv)		
	Format Co	mma Separated Valee Forma	t (*.csv) 🗘			
	✓ Device of	data				
	Format Int	ensity values - Not for Impo	rt (*.csv) 🗘			
	✓ M²/Divergence measurement res					
	Format Co	mma Separated Value Forma	t (*.csv)			
			Text Format (*.txt)			
	File		Comma Separated Value F	ormat (*.csv)		
	Folder	Documents\Thorlabs\Thorla	bs Beam\BP209			
	File name	Export_BP209VIS				
	✓ Date	YYYY-MM-DD				
	✓ Time	hh.mm.ss 🔷 🗢				
	✔ Index	1				
		C:/Users/Admin/Documents	s/Thorlabs/Thorlabs			
	Preview	Beam/BP209/Export_BP209 27.39 #001.	9VIS_2017-07-10_15.			
		-				
			DK X Cancel			
数据导出(Data Export)						
选择启用(Enable), 激活自动	动导出	过程。工具相	栏图标变为 <mark>-</mark>	」 , GUI底部	的状态栏显	显示为
	oopt Error	6 6 2 6	-last 7500 L Tarach 0	Deter 10 00 He	L Darah Kara 4 D	
	nent Error	s. pozisam	ipies: 7500 Target S	can Rate: 10.00 Hz	Resolution: 1.2	nul argous
数据自动导出过程一直持续	,直到	选中 禁用(Di	isable)选项,	则自动导出法	过程停止。	如果数据只保
存一次,请选中复选框						
		Data Export				
		O Disabled				
		Enabled				
		✓ Disable a	after next measurm	ient		

选择下次测量禁用(Disable after next measurement),在第一次运行M²测量后停止自动导出。

导出选项(Export Options)

此处可以通过选中相应的框来选择要导出的数据。

光束轮廓计算结果(Beam Profile Calculation Results)可以另存为.csv、*.txt或*.xls文件。保存 单个文件; 位移台在每个位置的数据都将附加到现有文件中。导出文件包含文件头(有关Beam软 件版本的信息、测量开始的时间以及有关所用光束质量分析仪的信息)和所有计算结果(请看<u>计算</u> 结果[52];选项"全选")。该文件的命名形式是通过在基本文件名后附加字符串"data"而形成的。

启用**设备数据(Device Data)**后,在位移台每个位置,将从光束质量分析仪检索到的强度值保存到 单独的文件中。有关设备数据和文件格式,请看<u>导出设备数据</u>[73]部分。该文件的名称是通过在基 本文件名后附加字符串"device"而形成的。

启用**M²/发散角测量结果(M²/Divergence Measurement Results)**, M²测试结果也可以以*.txt或 *.csv格式保存;请看保存M²测试结果 100 部分。

文件(File)

- 选择用于自动导出数据的目标文件夹。
- 选择一个文件名。
- 添加日期(选用)
- 添加时间(选用)
- 添加索引(选用)索引必须手动设置!
- 预览框(Preview)显示文件名的前缀以及所选的选项。

完成之后,点击OK。现在,可以开始具有自动导出数据功能的M²测量了。

使用自动导出数据功能的文件命名

光束轮廓计算结果				
Export_BP209VIS_2017-07-10_15.29.12_#001_Data.csv				
带日期、时间和手动索引的前缀	"Data"代表光束轮廓计算结果			
设备数据				
Export_BP209VIS_2017-07-10_15.29.12_#001	_Device_2017-07-10_15.29.22_#001.csv			
带日期、时间和手动索引的前缀	"Device"代表导出的设备数据(此处:光束的强度值)。紧跟着是单独的时间和相应位移台位置的自动索引			
M²/发散角测量结果				
Export_BP209VIS_2017-07-10_15.29.12_#001_Results.csv				
带日期、时间和手动索引的前缀	"Results"代表M²测试结果。			

7.8.5 运行M²测量

开始测量之前,请确保满足以下条件:

- 光束已正确对准——理想情况下,在整个扫描范围内,光束中心应对准探测器中心。本手册的光束对准 sei部分描述了达到这个要求的方法。
- 光束直径应符合<u>光束直径要求</u>88。
- 待测激光器的确切波长是已知的,因为波长值会影响M²测量结果。
- 尽可能避免反射和干扰。
- 激光系统已预热——取决于光源,此过程可能需要长达1个小时。
- 激光输出在空间和时间上都是稳定的。

点击开始(Start)按钮▶开始测量。系统将提示确认激光波长:

M ² M ² Wavelength Verification
The M ² measurement uses the wavelength
The wavelength has a major influence on the M2 value. Please enter the correct wavelength of the light source for a valid M² result.
▲ ok

验证波长,然后点击**OK**。

运行测量时,大多数按钮和选项都被禁用,比如M²测量设置和工具栏。这是特意设定的,防止测量期间更改任何设置。

点击停止(Stop)按钮O可以随时中断测量。

开始测量后,曲线图的X轴将适应用户定义的扫描范围,例如50到125 mm。Y轴自动调节到记录的光束宽度。

如果使用**普通扫描(Normal Scan)**,当精确扫描添加其他数据点时,图表上的刻度会放大。完成此步骤后(在测量结束时),会再次显示整个扫描范围。

7.8.6 M²测量结果

成功测量M²之后,光束质量测量窗口将如下图所示。

绿灯表示测量成功,并且符合ISO 11146标准:

ISO

M² X: 1.10 , M² Y: 1.07

如果使用了不同于ISO的光束宽度标准(请看<u>M²设置</u>107),则显示测量成功而没有ISO标注:

M² X: 1.10 , M² Y: 1.07

通常,X'轴和Y'轴与实验坐标系(即X轴和Y轴)不一致。此外,X'的M²值独立于Y'的M²值。对于高度椭圆的光束,比如半导体激光器的光束,M²X'和M²Y'的差异将比本示例大得多。

图例

- ◆ X'轴光束直径
- Y'轴光束直径
- X'轴双曲线拟合
- Y'轴双曲线拟合

这些值也显示在图表旁边的完整结果列表中:

Parameter	Value		Unit
Waist Asymmetry	1.00		%
Divergence Asymmetry	0.97		
Astigmatism	0.78		mm
	Χ'	Y'	
M ²	1.10	1.07	
Rayleigh Length	11.73	12.01	mm
Waist Position	98.85	98.07	mm
Waist Diameter	102.33	102.03	μm
Full Divergence Angle	0.500	0.487	•

腰斑的不对称性(Waist Asymmetry)代表束腰位置的椭圆度,通过计算X'和Y'轴方向上束腰直径的比率所得。腰斑的不对称性为1.0表示圆形光斑。

waist asymmetry =
$$\frac{d_{0y}}{d_{0x}}$$

发散角的不对称性(Divergence Asymmetry)是Y轴和X轴上发散角的比率。这个比率的值不等于 1.0则表示光束椭圆度随Z轴位置而变化,例如,椭圆光束被聚焦成圆形光斑时。

divergence asymmetry =
$$\frac{\theta_y}{\theta_z}$$

像散(Astigmatism)是因为X扫描方向上的束腰在Z轴上对应的位置不同于Y扫描方向上的束腰。因此,最小光斑直径的位置zox和zoy之间存在差异。

$$astigmatism_abs = z_{0y} - z_{0x}$$

M² X'和M² Y'是X'/Y'轴的M²值,根据测量数据点的双曲线拟合计算得出。

瑞利长度(Rayleigh Length) X'(Y')是从束腰位置X'(Y')到光轴上光束直径比束腰直径大√2倍的位置的计算距离[mm]。也可以查看M2理论 [34]部分。

束腰位置(Waist Position) X'(Y')是束腰(最小光束直径)的Z轴上的位置。这是从曲线拟合得出计算值(以mm为单位)。这个值可能与测得最小光束宽度的位置不同。

束腰直径(Waist Diameter) X'(Y')是焦点处X'(Y')方向的光束直径。这是从曲线拟合计算出的最小光束直径[µm]。这个值可能与测得的最小光束宽度不同。

全发散角(Full Divergence Angle)在M2理论 13 说明部分。

提示

所有结果均根据所用的拟合计算得出!

显示Z轴某个位置的结果

测量完成后,Z轴某个位置计算的光束直径、光束中心位置(X'和Y')和光束椭圆度可以从图表中查询到。如需查询,将鼠标指针移到测量曲线上。为了方便查看,可以通过绘制一个矩形框来放大曲线:

鼠标指针一旦碰到测量点,形状就会更改为[№]。点击这个点。对应的位置和计算值将显示在**所选** 数据点的计算结果(Calculations Results of the Selected Point)面板:

提示

与结果(Results)面板相比,此处显示的结果是从所测数据点计算出来的,没有双曲线拟合。因此,实际束腰显示的直径值可能与X'(Y')束腰直径不同。

参考测量

M²测量完成后,可以保存结果并随后用作参考。只需点击≫按钮,当前测量结果就成为参考值。 此外,参考数据以不同的颜色显示到图表中。

参考图例:

- ▲ X'轴参考光束直径
- Y'轴参考光束直径
- X'轴参考双曲线拟合
- Y'轴参考双曲线拟合

点击清除图标 可以删除参考数据。

请参考<u>保存M²测试结果</mark>100部分,了解如何保存光束质量测量结果。</u>

7.8.7 M²故障排除

以下是可能发生的典型问题示例以及解决这些问题的相应建议。

□ 不管位移台处于什么位置,光束都没有打在探测器上。

执行正确的光束对准 96。

□ 测量期间发生超时错误。

当光束质量分析仪在设置的超时时间内未传送有效图像时,便会发生超时错误。这可能是由于:

- 光电二极管的饱和。可以降低入射光功率,或者在可能的情况下使用焦距更长的透镜;这样可以增大焦斑直径,从而降低焦点的功率密度。
- 光束功率太低。
- 光束尺寸太小,无法计算椭圆(如果选择限幅水平椭圆作为光束宽度)。可以使用焦距更长的 透镜来增大光斑。
- 光束在孔径之外。对准光束,请看<u>光束对准</u>96〕。

□ 已执行M²测量,但显示⁶⁶⁹图标,未显示M²结果

确保正确执行了设备设置36。

□ M²值与预期值差很多。

例如,光束具有近高斯强度分布,且M²值大于1.1:

- 检查设置的波长(请看<u>M²设置</mark>107)</u>
- 检查**计算区域**的限幅水平:
 - ▶ 如果所选的限幅水平过高,则可能会切断光束,并且测得的光束区域可能小于实际光束的延伸范围。这会导致束腰太小和M²太小(甚至低于1)。
 - ▶ 如果所选的限幅水平太低,则计算区域和测量会捕获光束及光束周围的噪声。然后,测得的光束宽度大于实际光束宽度,从而导致M²增大。

□ M²小于1.0——怎么可能?

M²值<1.0从物理角度看是不可能的,但也许是因为

- 测量结果的准确性。应该考虑5%的误差。
- 波长设置不正确。将波长设置为正确的值,之后M²结果将得到校正,而无需重新测量。

□ 光束轮廓看起来是扭曲的(特别是在位移台的末端位置)。

即使期望激光器产生M² = 1.0的高斯光束,该光束仍然会受到激光器和光束质量分析仪之间每个 光学元件的影响。例如,聚焦透镜可能倾斜安装,或者产生高度畸变,从而导致像差和光束质量 下降。

滤光片和反射镜表面被污染的情况下,也可能影响光束轮廓。请根据制造商的说明清洁表面。

□ 错误信息

"M2测量已中止:所选扫描范围内的光束直径变化不足。"

软件无法在两倍的瑞利长度内找到足够的测量点。

- ●加大<u>测量范围</u>107。
- ●选择焦距较短的聚焦透镜。
- ●经验之谈:在扫描范围内,光束直径在束腰一侧的变化至少不低于1:2.5的比率——请看以下 示例。

□ 错误信息

"该测量不符合ISO标准,因为瑞利长度X(Y)(xx mm)内或瑞利长度的两倍以上的位置没有足够的数据点。"

- 软件无法以所需的分辨率测量。
- 增加数据点的最小数量(请看M²设置 [107])。
- ●如果错误消息仍然存在,请同时增大扫描范围。

BP209

□ 错误信息

"由于无法计算拟合, M2测量已中止。"

- 从测量的数据点计算双曲拟合是不可能的。可能的原因是,例如,束腰距离扫描范围较远, 或者未使用聚焦透镜。
- 将M²设置重置为默认设置——将扫描范围设置为最大。
- 检查设置以确保束腰在扫描范围内。
- 如果未使用聚焦透镜,则只能测量发散角!

□ 错误信息

"束腰位置超出扫描范围。扩大扫描范围或切换到发散角测量。"

- 根据测得的数据点计算双曲线拟合导致束腰位置超出扫描范围。通常,如果束腰靠近扫描终点位置,则会发生这种情况。扩大扫描范围。
- 将M²设置重置为默认设置——将扫描范围设置为最大。

7.9 发散角测量

发散角测量通过测量光束传播轴上不同点的光束直径来计算未聚焦的会聚或发散光束的发散 角。测量数据会经过线性拟合。

这种测量技术与光束质量(M²)测量非常相似,因此可以使用相同的硬件,但不使用聚焦透镜。 发散角测量是**光束质量**测量装置的一项功能,并且也使用M2MS扩展装置。

7.9.1 光束对准

为什么要对准光束?

光束质量分析仪具有确定的入射孔径,因此移动位移台时,必须确保激光束保持在孔径内。理想 情况下,在位移台移动期间,光束中心保持在孔径中心——这是正确测量光束质量的前提。

M2MS测量系统出厂时已经过对准。完全平行于位移台移动方向进入M2MS的光束在位移台移动 期间将保持在光束质量分析仪孔径的中心。换句话说,就是光束对准仅取决于光源的位置。通常 情况下,光源的输出光束是开放的。为了将待测光束引导到M2MS中,需要两个可调反射镜的组 合,Thorlabs提供多种此类产品。

在软件向导的引导下,光束对准过程分为两个步骤:

- 1. 粗略对准[12]: 通过辅助激光器(随货附带)确定待测激光输出孔径的正确位置。
- 2. 光束对准[123]: 待测激光的对准使光斑偏移和指向角最小。

7.9.1.1 粗略对准

对于粗略对准,Thorlabs提供的配件盒中附带对准激光器。这个步骤是将对准激光器安装在 M2MS上,替代光束质量分析仪。让出射光束通过光束质量分析仪孔径的中心进入M2MS并平行 于位移台移动方向。对准光束是反向定向的一一实际上,它离开光束质量分析仪,被位移台的两 个反射镜反射到激光源的出射孔径中心(请看M2MS工作原理[s7]的图纸)。

警告

使用该激光器时请小心!

- 从M2MS底座上拆下光束质量分析仪及其转接件。
- 将对准激光器安装到光束质量分析仪的位置,并将其3.5 mm的插头插入<u>对准激光器的</u> 输出接口(2) ⊶ 。
- 确保M2MS已打开并连接到控制电脑,Beam软件已启动,位移台已初始化。
- 从磁性支架上取下聚焦透镜。
- 打开对准激光器。
- 对准光学系统, 使对准激光器的光斑对准光源的中心。

7.9.1.2 精确对准

粗略对准后,需要使用M²测量面板的**对准(Alignment)**功能精调待测光束。这个分两个步骤。 **准备**

- 关闭对准激光器,并换上光束质量分析仪。
- 拆下聚焦透镜(请看<u>M2MS工作原理</u> ☞ 章节图纸中的③)
- 将光束质量分析仪连接到M2MS的一个USB输出口(连接PC ⊶ 章节中的③)。
- 确认可以被Beam软件识别(工具栏 <>>>> </>></> **设备选择** (st))。如果无法自动识别,请按刷新设备列表 (Refresh Device List)按钮。
- 确保可以识别位移台并初始化。如果不能,请按<u>刷新位移台列表按钮</u> [₃₅]识别出位移台后, 双击DDSM100按钮。位移台初始化并移动至200 mm的位置。
- 启动待测激光器。
- 从菜单"窗口(Windows)" → "M²光束质量测量(M² Beam Quality Measurement)"或点击M²按 钮打开M²子窗口,然后切换到对准选项。

指示灯和图标说明

	启动对准向导100
=	启动聚焦透镜对准向导 104
Z [mm]	此框显示位移台的实际位置;初始化后 = 200 mm。
Position 1 (2) [mm]	这里可以输入位移台移动时左右两端的位置。
01 02	左右两端位置的标记。除了用数字输入位置,也可以拖动标记来移动。
9	点击这些 拍摄(capture) 按钮,位移台移动到设定的位置(如果尚未到达此 位置),并拍摄光束中心位置(琥珀色十字准线)。截图将一直保留到位移台 恢复到恰当位置为止。
	此按钮启动位移台循环移动模式,让位移在位置1和2之间连续移动。可以 输入在两端位置的停留时间。在循环模式下,软件会自动拍摄左右两端位 置的光束中心(黄色十字准线)。
停留时间	输入所需的时间[秒]。点击图标这禁用停留时间。
	实际光束位置中心的十字准线。
	探测器中心的十字准线。
光斑偏移	是在位置2和1 [mm]之间X(Y)轴方向上的中心偏移。第二次拍摄后方框内 会显示第一个数值。
指向角	是光轴与位移台移动方向之间在X(Y)轴方向上的角度[°]。第二次拍摄后方 框内会显示第一个数值。
	 ✓ 对准失败 → 对准到可以正确测量光束质量(偏移 < 0.65 mm,指向角 < 0.35°) → 对准良好(偏移 < 0.35 mm,指向角 < 0.15°)
AD饱和度 (AD Saturation)	显示光束质量分析仪AD转换器的电流饱和度。为了实现正确的光束对准, 该值必在40-95% (BP209)/20-95% (BP10x)之间。数字字段右侧的绿灯 表示在"良好"范围。

7.9.1.3 发散光束对准向导

提示

请确保旋转安装座竖直放置,以使BP209的Y轴位于垂直方向。

请按启动向导(Start Wizard)按钮, 系统将要求您选择是要测量M²还是发散角。请做出选择:

启动向导:

- 为了对准成功,必须调整光功率水平,使AD饱和度介于40-95%之间。数字字段右侧的绿灯 表示在"良好"范围。对准期间,此状态不得更改
- 初始化后,位移台位于Position 2 (200 mm)。点击Position 2的拍摄按钮 ——拍摄中心,十字 准线颜色变为琥珀色。由于此时由蓝色十字准线标记的实际光束中心位于相同的位置,因此准 线的颜色显示为白色:

Position 2拍摄的中心

● 点击Position 1拍摄按钮(0 mm)。位移台移动到Position 1,并拍摄第二张中心位置:

M ²	Beam Quality	
Alignment	M ² / Divergence Measurement	
	Manual Alignment	
	Z [mm] 💿	0 Position 1 [mm] 0.00
<u>+</u>	0.00	Position 2 [mm] 200.00
		Dwell Time [s]
		Beam Displacement Y (mm)
•		
	Beam Displacement X [mm] 1.7	AD Saturation [%]
	Pointing Angle X [degree] 0.2	63.91
P	rior to start this wizard, please make sure that the coarse alignment of your laser source was e	executed. Replace the alignment laser with the
i la	leam Profiler; do not install the lens yet. This wizard allows to move the stage between two pos sop mode () . Observe the beam shift and minimize Beam Displacement and Pointing Anglepar reliow condition.	itions by dicking the icons III or by using the ameters in order to achieve green or at least
		Help Next Cancel

Position 1拍摄的中心

● 现在,光斑偏移和指向角的数值都已显示出来。

● 调节您的激光源对准光束位置。随后点击position 1和2的拍摄按钮,观察对准并优化,直到四个对准标准都满足(灯泡必须至少为黄色):

对准良好的光束位置

 ● 位移台在两个停止位置之间的移动可以通过软件自动控制。只需按下循环按钮
 ▶并输入一个适当的停留时间值即可。位移台开始循环移动,在停止位置停留指定的时间。停留期间可以重新 对准。但请记住,对准指示数值仅在下一此运动之后才会更新。

对准移动循环

- 点击□按钮终止循环。
- 完成之后,点击**下一步(Next)**以继续。

7.9.2 发散角测量面板

发散角测量面板(Divergence Measurement Panel)是M²测量窗口的一部分:

发散角测量面板分为6个子面板:

1. 工具栏:

0	发散角设置	打开 <u>发散角测量[131]</u> 的设置
	自动保存数据	M²测量期间保存光束质量分析仪数据
	开始/停止	开始/停止发散角测量
M ²	M ²	切换到M ² 测量
θ)	发散角	切换到发散角测量
	保存数据	成功测量发散角后启用此按钮,且可以保存绘图数据。
	网格	禁用/启用图中的网格
POF	PDF测试报告	将发散角测量结果保存到PDF文件中

2. 发散角图表

测量数据绘制在图表中。图表上方的4个按钮可以配置显示:光束直径X'(Y')(Beam Diameter X'(Y'))按钮显示/隐藏各个位置的测量数据显示,而发散角拟合(Divergence Fit X'(Y'))按钮显示/ 隐藏测量数据点的曲线拟合。

测量完成后,在图表下方显示X轴和Y轴的发散角结果。左侧有一个指示图标,显示测量是否成功。 工具栏和图表之间的红色标记按钮 将图表扩展到整个发散角窗口。

3. 数值结果

此区域中会详细显示光束质量的测量结果。详情请看发散角测量结果示部分。

4. 位置栏

发散角图表下方的位置栏显示位移台的实际位置,如之前在对准 38选项所示。

5. 个别数据点

在此子面板的标题中选择想要测量的数据点的序号(Number)。对于选择的点,会显示位移台位置和光束的X轴和Y轴轮廓。右表所选数据点的计算结果(Calculation Results of the Selected Point),包含以下信息:

参数	释义
Position	以mm为单位显示位移台的Z轴实际位置。
Azimuth Angle [deg]	显示的值无关紧要,始终等于 90° 。
Ellipticity	拟合椭圆光束的椭偏度(请看 <u>应用说明</u> 147)
Beam Diameter X' [µm] Beam Diameter Y' [µm]	根据设置证, 基于高斯拟合、近似椭圆或光束宽度限幅(1/e²)显示光束 直径。坐标系始终与光束质量分析仪前面板上标记的狭缝坐标相关。
Centroid Position X' Centroid Position Y'	光束中心位置与光束质量分析仪前面板上标记的狭缝坐标相关。

6. 状态栏

● 测量进度条

● 所测数据点总数

- 用于发散角测量的光束宽度设置
- 延迟线:测量范围(开始位置和停止位置之间的差异)
- 波长设置(与发散角计算无关)

7.9.3 发散角测量设置

为了成功可靠地执行测量,恰当的测量设置至关重要。点击 🥰 进入发散角测量设置。

😪 Divergence Measurement Settings 🛛 💌			
Beam Width for Divergence Measurement			
O Use Gaussian Diameter for measurement			
Beam Width Clip (1/e ²)			
Approx. Ellipse (Clip Level at 1/e ²)			
Approx. Ellips	O Approx. Ellipse (Clip Level at 50%)		
Correct Beam	n Width		
Measurement Para	meter		
Wavelength [nm]		•	
Measurement Ran	Measurement Range		
Start [mm]	0.00		
Stop [mm]	200.00		
Min. Data Points	20		
Timeout [sec]	15		
Unit for Angle			
Degree (deg)			
O Milliradian (mrad)			
Reset			X Close

光束宽度(Beam Width)

光束宽度的计算是在两种可能的限幅水平下基于椭圆的近似 计算。测量开始时,通过平均10帧数据确定一个参考角。然 后使用此角度评估所有后续帧和椭圆。

测量参数(Measurement Parameters)

波长与发散角测量无关。

测量范围(Measurement Range)

确定从起点到终点的距离,测量过程中在这个范围内移动位 移台。Start必须至少比Stop小5 mm且≥ 0 mm。Stop的有 效值为

5 mm < Stop < 位移台长度。

提示

建议设置>40 mm的扫描范围,以确保更高的准确度。最好 是对整个位移台长度扫描。

超时时间(Timeout)是直到可以从光束质量分析仪中检索到有效数据为止的等待时间(例如在慢速 移动的情况下)

扫描后的位移台位置(Stage Position After Scan)

与发散角测量无关。

角度单位(Angle Unit)

可以选择度或毫弧度。

重置(Reset)

Leset 恢复发散角设置的默认设置:

参数	默认设置	
光束宽度	光束宽度限幅(1/e²)	
Start	0 mm	
Stop	200 mm	
最小数据点	10	
超时时间	15 sec	

设备设置(Device Settings)

请务必将光束质量分析仪的增益和带宽(请看狭缝式光束质量分析仪参数[37])设置为Auto。

7.9.4 保存发散角测量结果

除了标准功能"保存发散角测量结果"外,Thorlabs Beam软件还可以在执行发散角测量时自动保存 光束轮廓数据。

详情请看<u>保存M²测量结果</u>109。

提示

发散角测量结果不能保存为PDF测试报告,而只能保存为CSV、TXT或XLS文件。

7.9.5 运行发散角测量

发散角测量旨在测量低发散或会聚光束的传播。因此,测量需要去除任何会在扫描范围内产生束 腰的聚焦元件。

开始测量之前,请确保:

- 光束已正确对准——理想情况下,在整个扫描范围内,光束中心应对准探测器中心。请看 <u>光束对准</u>121章节了解对准光束的信息。
- 尽可能避免反射和干扰。
- 激光系统已预热——取决于光源,此过程可能需要长达1个小时。
- 激光输出在空间和时间上都是稳定的。

点击**开始(Start)**按钮▶开始测量。

运行测量时,大多数按钮和选项都被禁用,比如发散角测量设置和工具栏。这样可以防止在测量过程中修改设置。

如有必要,可以点击**Stop**按钮**O**中断测量。

开始测量后,曲线图的X轴将适应用户定义的扫描范围,例如0到120 mm。Y轴自动调节到记录的 光束宽度。

7.9.6 发散角测量结果

绿灯表示测量成功。

这些值也可以在完整的结果列表中找到。

Parameter	Value		Unit
Full Divergence Angle Mean	-0.111		۰
Divergence Asymmetry	1.19		
	X'	Υ'	
Full Divergence Angle	-0.102	-0.121	۰

负值表示会聚光束,正值表示发散光束。

提示

所有结果均根据所用的线性拟合计算得出!

全发散角X'(Y')(Full Divergence Angle X'(Y'))在<u>M²理论</u> 一章中有说明。

发散角的不对称性(Divergence Asymmetry)是Y轴和X轴扫描方向上发散角比率。这个比率的值不等于1.0则表示光束椭偏度随Z轴位置而变化,例如,椭圆光束被聚焦成圆形光斑时。

divergence asymmetry =
$$\frac{\theta_y}{\theta_x}$$

参考测量

可以保存实际的测量结果,之后用作参考,这与<u>M²测量结果</mark> 而一样。</u>

7.10 M²理论

到束腰位置的距离**z**越长,聚焦激光束的直径**d(z)**越大,可以使用下式计算:

$$d(z) = d_0 \sqrt{1 + \left(\frac{z}{z_R}\right)^2}$$

其中

d_0	束腰直径
Z R	瑞利长度
λ	波长

此方程式是假设束腰位置为零的情况。否则**z**必须替换为(z-zo)

*瑞利长度*z_R是从束腰位置到光束直径是束腰√2 = 1.41倍的位置之间的距离。

从*d(z)*的方程式可以看出,光束直径随*z*在远场中(z >>z_R)呈线性增大。可以通过以下公式计算全发散角Θ

$$\Theta \approx \frac{d(z; z \gg z_R)}{z} = \frac{d_0}{z_R}$$

对于基模为TEMoo(高斯光束形状)的激光束,理论上可以证明瑞利长度为:

$$z_{R_G} = \frac{\pi d_{0_G}^2}{4\lambda}$$

因此,对于给定的波长,高斯光束的最小直径(在束腰)与发散角乘积 **d**₀, · O_c (又称为"光束参数乘积", BPP)是恒定的:

$$d_{0_G}\Theta_G = \frac{4\lambda}{\pi}$$

对于混合模(MM)光束,即具有比基模TEMoo高阶的模的光束,光束直径和发散角的乘积还要增加M²倍。

$$d_{0_{MM}}\Theta_{MM} = M^2 d_{0_G}\Theta_G = M^2 \frac{4\lambda}{\pi}$$

最后,衍射极限倍因子M²的计算公式为

$$M^2 = \frac{\pi}{4\lambda} d_{0_{MM}} \Theta_{MM}$$

瑞利长度则为

$$z_{R_{MM}} = \frac{\pi d_{0_{MM}}^2}{M^2 \lambda}$$

衍射极限倍因子M²的倒数称为光束传播因子或光束质量K。

$$K = \frac{1}{M^2}$$

下表说明了理想高斯光束和非理想光束之间的差异。

参数	高斯光束	混合模光束
衍射极限倍因子M ²	1	> 1
光束传播因子 = 光束质量K	1	< 1
束腰(给定透镜下)	最小	较大
束腰do处的发散角	窄	较宽

M² > 1的非理想高斯光束的成因

优先使用高斯光束,因为它的发散角最小且能达到最小聚焦直径。与高斯形状的差异可能是由于

- ●高阶模态的存在
- ●激光器中增益介质不均匀导致的幅度和相位失真
- ●异常光的存在

使用相同的聚焦透镜时,这些失真导致束腰更大,从而降低了焦点处可以实现的最大功率密度。

基模TEMoo(理想的高斯光束)与混合模光束之间的传播比较

在给定发散角(即已知透镜的焦距)的情况下,仅基模会产生理论上可达到的最小束腰(绿色曲线)。 如果光束质量变差(红色曲线),则束腰增大。如果发散角固定,则束腰与基模高斯光束相比会线 性增大M²倍。

$$d_{0_{MM}}(\Theta_{MM} = \Theta_G) = M^2 \cdot d_{0_G}$$

zo处相应的功率密度降低(M²)²。同时,瑞利长度也增大M²倍。

$$z_{R_{MM}}(\Theta_{MM} = \Theta_G) = \frac{\pi d_{\Theta_{MM}}^2}{M^2 \cdot 4\lambda} = M^2 \frac{\pi d_{\Theta_G}^2}{4\lambda} = M^2 \cdot z_{R_G}$$

8 自行编写应用程序

如要自行编写应用程序,需要特定的仪器驱动程序和一些可在不同编程环境中使用的工具。驱动 程序和工具在软件安装过程中已安装到计算机,无法在安装包中找到。

本节中介绍了在Windows 7、Windows 8.1和Windows 10(32位和64位)系统中,如何找到驱动和 在不同编程环境中所需的文件。

为了完全支持64位LabView版本,安装包提供了两个安装程序组件,即32位和64位组件:

- 对于Windows 7(32/64位)、Windows 8.1(32/64位)和Windows 10(32/64位): 安装"Thorlabs Beam VXIpnp Instrument Driver (32bit)"
- 对于Windows 7(64位)、Windows 8.1(64位)和Windows 10(64位): 安装"Thorlabs Beam VXIpnp Instrument Driver (64 bit)"

也就是说,32位VXIpnp驱动程序可同时用于32位和64位操作系统,而64位驱动程序则需要64位操作系统。

提示

Beam软件和驱动程序包含32位和64位应用程序。在32位系统中,

仅将32位应用程序安装到

C:\Program Files\...

在64位系统中,仅将64位应用程序安装到

C:\Program Files\...

而在以下位置可以找到必要的32位组件

C:\Program Files (x86)\...

下表是特定编程环境所需文件的概览。

编程环境	所需文件
C, C++, CVI	*.h (header file) *.lib (static library)
C#	.net wrapper dll
Visual Studio	*.h (header file) *.lib (static library) or .net wrapper dll
LabView	*.fp(功能面板)和 NI VISA仪器驱动程序。 除此之外,*.llb容器文件还提供了LabVIEW驱动程序vi。 提示: 只有在识别出LabVIEW安装程序后,才能安装LabVIEW 驱动程序和组件。

提示

所有上述环境还需要NI VISA仪器驱动程序dll!

NI-VISA Runtime安装过程中,将创建一个包含文件的系统环境变量VXIPNPPATH。它存储驱动程序安装位置的信息,通常存储在C:\Program Files\IVI Foundation\VISA\WinNT\。

这就是安装NI-VISA Runtime系统后需要重新启动系统的原因:这个环境变量对于安装应用程序软件组件是必需的。

下一节中将详细介绍上述文件的位置。

8.1 32位操作系统

提示

根据VPP6(Rev6.1)标准,32位VXIpnp驱动程序的安装包括WINNT和GWINNT框架。 VXIpnp仪器驱动程序:

C:\Program Files\IVI Foundation\VISA\WinNT\Bin\TLBP2_32.dll

提示

所有开发环境都需要该仪器驱动程序!

Header file

C:\Program Files\IVI Foundation\VISA\WinNT\include\TLBP2.h

Static Library

C:\Program Files\IVI Foundation\VISA\WinNT\lib\msc\TLBP2 32.lib

Function Panel

C:\Program Files\IVI Foundation\VISA\WinNT\TLBP2\TLBP2.fp

VXIpnp仪器驱动程序在线帮助:

C:\Program Files\IVI Foundation\VISA\WinNT\TLBP2\Manual\TLBP2.html

NI LabVIEW驱动程序

LabVIEW驱动程序是32位驱动程序,仅兼容32位NI-LabVIEW 8.5及以上版本。

C:\Program Files\National Instruments\LabVIEW xxxx\Instr.lib\TLBP2... ...\TLBP2.llb

(带有驱动程序和示例的LabVIEW容器文件。"LabVIEW xxxx"代表实际的LabVIEW安装文件夹。)

.net wrapper dll

C:\Program Files\Microsoft.NET\Primary Interop Assemblies… …\Thorlabs.TLBP2_32.Interop.dll C:\Program Files\IVI Foundation\VISA\VisaCom\… …\Primary Interop Assemblies\ Thorlabs.TLBP2 32.Interop.dll

C语言示例

项目文件:

C:\Program Files\IVI Foundation\VISA\WinNT\TLBP2\Examples\... ...\CVI Sample\CSample.prj

源文件:

C:\Program Files\IVI Foundation\VISA\WinNT\TLBP2\Examples\... ...\CVI Sample\CSample.c

可执行的样本演示:

```
C:\Program Files\IVI Foundation\VISA\WinNT\TLBP2\Examples\...
...\CVI Sample\CSample.exe
```

C#示例

解决方案文件:

C:\Program Files\IVI Foundation\VISA\WinNT\TLBP2\Examples... ...\MS VS 2012 CSharp Demo\DotNet_Sample\Thorlabs.BP2_CSharpDemo... ...\Thorlabs.BP2 CSharpDemo.sln

项目文件:

C:\Program Files\IVI Foundation\VISA\WinNT\TLBP2\Examples ··· ···\MS VS 2012 CSharp Demo\DotNet_Sample\Thorlabs.BP2_CSharpDemo··· ···\Thorlabs.BP2_CSharpDemo.csproj

可执行的演示示例:

C:\Program Files\IVI Foundation\VISA\WinNT\TLBP2\Examples ··· ...\MS VS 2012 CSharp Demo\DotNet_Sample\Thorlabs.BP2_CSharpDemo... ...\output\Thorlabs.BP2 CSharpDemo.exe

LabView示例

C:\Program Files\National Instruments\LabVIEW xxxx\Instr.lib\TLBP2... ...\TLBP2.llb

(带有驱动程序和示例的LabVIEW容器文件。"LabVIEW xxxx"代表实际的LabVIEW安装文件夹。)

8.2 64位操作系统

提示

根据VPP6(Rev6.1)标准,64位VXIpnp驱动程序的安装包括WINNT、WIN64、GWINNT和GWIN64框架。这意味着64位驱动中也包含32位驱动程序。

在64位操作系统中,64位应用程序安装在

"C:\Program Files"

而32位的文件在

"C:\Program Files (x86)"

下面列出了两者的安装位置。

VXIpnp仪器驱动程序:

C:\Program Files (x86)\IVI Foundation\VISA\WinNT\Bin\TLBP2_32.dll C:\Program Files\IVI Foundation\VISA\Win64\Bin\TLBP2_32.dll C:\Program Files\IVI Foundation\VISA\Win64\Bin\TLBP2_64.dll

提示

所有开发环境都需要此仪器驱动程序!

Header file

C:\Program Files (x86)\IVI Foundation\VISA\WinNT\include\TLBP2.h C:\Program Files\IVI Foundation\VISA\Win64\include\TLBP2.h

Static Library

C:\Program Files (x86)\IVI Foundation\VISA\WinNT\lib\msc… …\TLBP2_32.lib C:\Program Files\IVI Foundation\VISA\Win64\lib\msc\TLBP2_32.lib C:\Program Files\IVI Foundation\VISA\Win64\Lib x64\msc\TLBP2 64.lib

Function Panel

C:\Program Files (x86)\IVI Foundation\VISA\WinNT\TLBP2\TLBP2.fp

VXIpnp仪器驱动程序在线帮助:

C:\Program Files (x86)\IVI Foundation\VISA\WinNT\TLBP2\.

...\Manual\TLBP2.html

NI LabVIEW驱动程序

LabVIEW驱动程序兼容32位和64位NI-LabVIEW2009及以上版本。

C:\Program Files\National Instruments\LabVIEW xxxx\Instr.lib\TLBP2.... ...\TLBP2.llb

(带有驱动程序和示例的LabVIEW容器文件。"LabVIEW xxxx"代表实际的LabVIEW安装文件夹。)

.net wrapper dll

C:\Program Files (x86)\Microsoft.NET\Primary Interop Assemblies... ...\Thorlabs.TLBP2 32.Interop.dll

C:\Program Files (x86)\IVI Foundation\VISA\VisaCom\.

...\Primary Interop Assemblies\Thorlabs.TLBP2_32.Interop.dll

C:\Program Files\IVI Foundation\VISA\VisaCom64\.

... \Primary Interop Assemblies \Thorlabs.TLBP2 64.Interop.dll

C语言示例

项目文件:

C:\Program Files (x86)\IVI Foundation\VISA\WinNT\TLBP2\Examples\... ...\CVI Sample\CSample.prj

源文件:

C:\Program Files (x86)\IVI Foundation\VISA\WinNT\TLBP2\Examples\... ...\CVI Sample\CSample.c

可执行的演示示例:

C:\Program Files (x86)\IVI Foundation\VISA\WinNT\TLBP2\Examples\... ...\CVI Sample\CSample.exe

9 保养和维修

请保护好光束质量分析仪,避免受到不利环境条件的影响。光束质量分析仪不防水。

注意

为了避免损坏仪器,请勿将其置于喷雾、液体或溶剂中!

此仪器不需要用户自己定期维护。

BP209的模块均不允许用户自己维修。如果发生故障,请先联系Thorlabs。如有必要,我们将为您提供所需的退运信息。

请不要取下盖子!

9.1 版本及其他信息

帮助(Help) → 关于Thorlabs(About Thorlabs)显示有关Beam软件的数据。

如需帮助,请告知应用程序的软件版本。这样有助于找出错误。

9.2 清洁

光束质量分析仪转筒上的部件(狭缝)不能经受机械撞击。请勿尝试使用薄纸、棉签或压缩空气清 洁狭缝,否则可能会损坏狭缝。如果看见污染物,请与我们联系。本手册的末尾可查询我们在全 球的分支机构。

可以使用无绒湿布清洁仪器的外表面。
9.3 故障排除

□ 软件安装失败

需要管理员权限才能在电脑上安装Beam软件,否则无法安装。如果在安装软件时遇到问题,请与系统管理员联系。

□ 无法识别光束质量分析仪

如果启动Beam软件后未识别仪器,则菜单栏中的设备设置按钮会被划掉(22)。

- 检查是否已连接BP209。
- 检查USB电缆。确保使用的是随附的仪器电缆。
- 检查驱动程序是否安装正确。
- 检查绿色LED是否点亮——LED熄灭表示未加载光束质量分析仪的固件。

请看<u>连接PC</u>17部分了解详情。

可以拔出并将光束质量分析仪重新连接到其他USB端口,或使用其他USB电缆。等待几秒钟, 直到绿色LED点亮。然后在设备选择面板中点击'**刷新设备列表(Refresh Device List)**'。请看 <u>启动应用</u> 18 部分了解更多详情。

□ 连接了旧版的外部VT-80位移台,但无法识别

- 如果Beam软件启动后未初始化M²位移台,
 - ●检查位移台是否已通电(红色LED闪烁)
 - ●检查位移台与电脑的连接
- 如果使用了USB转串口转换器,请检查是否正确安装了驱动程序。
- 按刷新(Refresh)按钮

Cevice Selection
Device Selection
Refresh Device List
Beam Profiler
BP209-VIS/M M00307152
Refresh Stage List
Stages Serach for connected Stages
Close

□ 结果和图形未更新

- ●设备处于暂停模式。通过点击菜单栏中的Start▶按钮恢复设备。
- ●启用了最大值(Max Hold)<u>▲</u> ——通过点击最大值图标 <u>▲</u> 关闭最大值模式。
- ●"平均次数(Average over frame)"可能很高,请在<u>光束设置</u>₄而面板确认此值。

9.3.1 警告和错误

一旦检测到不合适的测量条件,警告和错误消息就会出现在状态栏中。因此,请始终注意状态栏, 以防测量错误。下面显示了一些示例:

🗼 Scan Speed not stabilized! Samples: 3760 | Scan Rate: 20.00 Hz | Target Resolution: 1.20 μm | 0.60 fps

□ 扫描速度不稳定!

释义 检测到的转筒转速与设定值不同。无法正确测量。

解决办法 如果刚更改了扫描速率,可能会出现此警告——转筒的惯性推迟了达到新设定值的时间。达到设定值后,警告消失。如果仍然存在,则光束质量分析仪可能已损坏,需要返厂维修——请联系Thorlabs获取退回说明。

□ 设备处于暂停模式

- 释义 在菜单栏中,按下暂停 🕕 或下一帧 🕨 按钮。
- 解决办法 在菜单栏中按开始 > 按钮。

注意

一旦状态栏中显示错误或警告,所计算的光束参数就不可靠!

日文和中文操作系统下的错误

在以下条件下

- Windows[®]7 (32或64位),日语
- 己安装Microsoft[®] Office 10
- 已安装Thorlabs BEAM Software 5.0

Beam Software无法启动,并且出现错误消息

"Microsoft Visual C++ Runtime Library: Runtime Error! Program: C... R6030 -CRT not initialized" 此错误是在安装MS Office 2010之后更改输入法编辑器(IME)造成的。

解决办法

请将IME设置回标准Microsoft IME,如下图所示:

10 应用说明

本章包含有关光束轮廓测量方法的一些背景信息。

光束轮廓可以通过多种不同的参数来表征。我们旨在提供一种软件,可以根据ISO11146-1标准测量所有常用的光束参数。

以下各节会详细说明测量的参数。

10.1 坐标系

实验坐标系

实验坐标系(即参考坐标系)基于转筒真实的X和Y坐标方向,与前面板上的标记一致。

转换坐标系

转换后的坐标系基于计算的光束轴(椭圆拟合或4σ光束直径的短轴和长轴)。

10.2 原始数据测量

实验(或参考)坐标系

4σ光束宽度是光束在X轴和Y轴(中心)上的宽度,由二阶矩计算得出:

$$d_{\sigma x} = 4 * \sigma_x \qquad d_{\sigma y} = 4 * \sigma_y$$

此处, σx和σy分别是水平或竖直边缘分布的标准偏差:

$$\sigma_{x} = \sqrt{\frac{\sum \left[(x - x_{centroid})^{2} * p(x, y) \right]}{Sum_Intensity}}} \quad \sigma_{y} = \sqrt{\frac{\sum \left[(y - y_{centroid})^{2} * p(x, y) \right]}{Sum_Intensity}}$$

以及

$$\sigma_{xy} = \sqrt{\frac{\sum \left[(x - x_{centroid}) * (y - y_{centroid}) * p(x, y) \right]}{Sum_Intensity}}$$

提示

4σ光束宽度测量不符合ISO11146!显示的结果仅供参考!

根据ISO11146-3,对于狭缝式光束质量分析仪,光束直径应在1/e²的限幅水平下定义,而对于相机式光束质量分析仪,应采用4σX'和4σY'光束宽度。

峰值位置

X, Y: 相对于参考点最先找到强度(AD值)最高的像素位置。

$$R = \sqrt{X^2 + Y^2}$$

是峰值位置像素点距参考点(=传感器中心)的刻度盘距离。 中心位置:

X, Y和R位置(一阶矩)相对于上述参考点在所有像素上计算得出。

$$X = SUM [x * p(x,y)] / I$$
 $Y = SUM [y * p(x,y)] / I$

其中:

p(x,y) 位置(**x**,**y**)的强度;

l 总强度;

SUM 整个区域中像素的总和

AD饱和度(AD Saturation)

仪器中AD转换器的饱和度。为了获得良好的SNR(信噪比),饱和度应不低于40%且不高于95%。 总功率

总功率通过转筒中的ND滤光片zil测得(光电二极管电流与典型的波长响应度有关)。

10.3 椭圆(拟合)

使用设置的限幅水平,光束形状拟合椭圆。

直径(限幅水平)包含了短轴(最小)长度、长轴(最大)长度以及它们的算术平均值。 椭偏度和离心率在ISO 11146-1中定义为

Ellipticity =
$$\frac{d_{\min}}{d_{\max}}$$
 Eccentricity = $\frac{\sqrt{d_{\max}^2 - d_{\min}^2}}{d_{\max}}$

其中, dmin = 近似光束椭圆的短轴长度, dmax = 近似光束椭圆的长轴长度。

方向表示椭圆长轴与水平X轴之间的夹角θ。范围: -90° < θ ≤ 90°。

10.4 X-Y-轮廓测量

限幅水平(xx%)的光束宽度

光束宽度是两点之间的距离,在这两点之间,捕获的光束轮廓被X轴或Y轴从中心平分,并且两侧 强度下降到峰值功率的某个百分比。这个百分比称为限幅水平。

首选的限幅水平是50%(半高全宽)和13.53%(恰好1/e²)。

由于Beam软件支持可变的限幅水平,因此光束宽度始终与带括号的限幅水平一起显示。

提示

请注意,'光束宽度'始终是直径,而不是光束的半径。

10.5 高斯拟合测量

激光器和光纤输出等相干光源的光束轮廓或多或少接近高斯的分布。如果聚焦高斯光束,它会聚 到束腰,然后再发散。

高斯拟合通过最小二乘法来将光束的X轴和Y轴截面轮廓拟合为高斯形状。换句话说,就是高斯拟 合表示捕获的测量数据到高斯分布的近似。

高斯强度是高斯拟合光束轮廓的强度分布。

高斯直径是高斯拟合轮廓在1/e²强度限幅水平的宽度。

10.6 贝塞尔拟合

贝塞尔光束最重要的特性之一就是它是无衍射的。也就是说,与高斯光束不同,它们的形状在传播过程中不会改变,并且它们沿传播方向没有最高强度的位置,即没有焦点。它的分布可以通过 第一类贝塞尔函数来描述。

理想的贝塞尔光束是不存在的,但是可以通过使用锥透镜、狭窄的环形孔径或轴对称衍射光栅聚 焦高斯光束来获得比较近似的贝塞尔高斯光束。有些阶跃折射率光纤的输出也可以具有接近贝塞 尔光束的轮廓。

贝塞尔拟合将给定的光束轮廓近似为贝塞尔函数分布。

11 附录

11.1 光束质量分析仪技术数据

型号	BP209-VIS BP209-VIS/M	BP209-IR BP209-IR/M	BP209-IR2 BP209-IR2/M
波长范围	200 - 1100 nm	900 - 1700 nm	900 - 2700 nm
探测器类型	Si,紫外增强版	InGaAs	InGaAs扩展版
孔径	9 mm		
扫描方法		扫描狭缝式,刀口式	
狭缝尺寸		5 µm和25 µm	
最小光束直径		2.5 µm	
最大光束直径		9 mm 1)	
采样分辨率	0.12	2 - 1.24 µm (取决于扫描词	 速率)
扫描速率		2.0 - 20.0 s ⁻¹ (连续可变)	
光功率范围	1 µW -	- 10 W (取决于光束直径和	印型号)
放大器带宽	16 - 1	000 kHz in 11 steps (@	-1dB)
采样频率		0.2872 - 2.0 MHz	
动态范围	78 dB (放大器可切换)		
光电二极管偏压	0 / -1.5 V (ī	可切换)	0 V
信号数字化		15位	
尺寸	Ø 79.5 mm x 60 mm (包含旋转安装座)		
最低脉冲重复频率	10 Hz ²)		
软件			
显示的参数和特性	X-Y-轮廓、中心位置、峰值位置、伪3D轮廓、 光束宽度限幅 / 二阶矩(4σ) 、高斯拟合应用、 彩色显示的Pass/Fail测试		
符合标准	(光束	ISO 11146 宽度、发散角和光束传播	系数)
通用系统要求	Windows® 7及以上, USB 2.0高速接口		
M ² 分析系统			
兼容的M ² 选项		M2MS M ² 测量系统	
符合标准	ISO 11146		
测量参数 ³)	M ² 、束腰宽度、束腰位置、瑞利长度、发散角、光束指向、 腰斑不对称性、像散		
通用			
工作温度	+5+35 °C		
储存温度	-40+70 °C		
达到额定准确度的预热时间	15 min		

1) BP209-VIS; BP209-IR: Ø9 mm下光束直径误差<10%

BP209-IR2: Ø9 mm、光束发散角<5°时光束直径误差<20%

²) 使用M²选项时300 kHz

3) 使用M²选项

所有技术数据都在23 ±5℃且相对湿度45 ± 15%时有效。

11.2 M2MS-BP209技术数据

型号	M2MS- BP209VIS-AL	M2MS- BP209VIS- AL/M	M2MS- BP209VIS	M2MS- BP209VIS/M
光束质量分析仪	BP209-VIS	BP209-VIS/M	BP209-VIS	BP209-VIS/M
波长范围	250 - 60	0 nm	400 - 1100 nm	
光束直径范围	20 µ	m - 9 mm (在光束质	〔量分析仪入射孔径	处)
功率范围		1 µW - 10 W,刵	R决于光束直径	
位移台		DDSM1	00/M	
行程范围		100n	nm	
速度 (最大)	500 mm/s			
有效位移范围	200 mm,-100 mm - +100 mm (距焦点)			
透镜焦距	250 mm			
光轴高度				
M²测量范围				
典型的M²准确度	±5% ,取决于光学元件和对准			
不确定度为 5% 时可接受的光束 直径	20 μm - 4.5 mm (在光束质量分析仪入射孔径处)			
可探测的最小发散角	<0.1 mrad			
适用光源	CW和脉冲光源≥300 kHz			
典型测量时间	15-30s, 取决于光束形状和设置			
通用				
尺寸	300 mm x 175 mm x 130mm			
重量	4.6kg			

型号	M2MS- BP209IR	M2MS- BP209IR/M	M2MS- BP209IR2	M2MS- BP209IR2/M
光束质量分析仪	BP209-IR	BP209-IR/M	BP209-IR	BP209-IR/M
波长范围	900 - 17	700 nm	900 - 27	700 nm
光束直径范围	20	µm - 9 mm (在光束	质量分析仪入射孔谷	圣处)
功率范围		1 µW - 10 W,	取决于光束直径	
位移台	DDSM100/M			
行程范围	100mm			
速度(最大)	500 mm/s			
有效位移范围				
透镜焦距	250 mm			
光轴高度	70 mm (无额外支脚)			
M²测量范围	1.0 - 无上限			
典型的M²准确度	±5%,取决于光学元件和对准			
不确定度为 5% 时可接受的光束 直径	20 μm - 4.5 mm (在光束质量分析仪入射孔径处)			
可探测的最小发散角	<0.1 mrad			
适用光源	CW和脉冲光源≥300 kHz			
典型测量时间	15-30s, 取决于光束形状和设置			
通用				
尺寸	300 mm x 175 mm x 130mm			
重量		4.6	Skg	

11.3 M2MS扩展装置技术数据

型号	M2MS	M2MS-AL	
波长范围	400-2700 nm ¹⁾	250-600nm ¹⁾	
光束质量分析仪兼容性	BC106系	列、BP209系列、BP10x系列	
位移台		DDSM100/M	
行程范围	100mm		
速度 (最大)		500 mm/s	
有效位移范围	200 mm,	-100 mm - +100 mm (距焦点)	
透镜焦距	250 mm		
光轴高度	70 mm (无额外支脚)		
M²测量范围	1.0 - 无上限		
典型的M²准确度	±5 %	,取决于光学元件和对准	
可探测的最小发散角		<0.1 mrad	
适用光源		CW ,脉冲*	
尺寸	300 mm x 175 r	mm x 109mm (无光束质量分析仪时)	
典型测量时间	15 - 30	s ,取决于光束形状和设置	

1) 取决于光束质量分析仪类型

11.4 光电二极管典型响应度曲线

下面的图表显示了BP209中所用光电二极管的典型响应度曲线图。

典型响应度-UV增强型Si光电二极管

典型响应度 - InGaAs光电二极管

11.5 功率范围

可用的最大入射功率取决于光束直径和波长:光束宽度越小,最大入射功率越低,这是因为光电 二极管最大功率密度的限制。下图显示了最大响应度的波长下允许的入射功率范围(BP209-VIS ~ 980 nm; BP209-IR ~ 1550nm; BP209-IR ~ 2200nm):

提示

请注意,这些工作功率范围适用于在扫描狭缝或刀口模式下使用狭缝进行的测量;测量总功率时, 这些限制可能会降低。扫描狭缝模式将一部分光束功率传输到光电探测器,而在刀口模式下, <Ø20µm的未衰减全光束都传输到光电探测器。除了两对狭缝之外,转筒还包含一个带有中性密 度(ND)滤光片的孔径,每旋转一次,即可使整体衰减的光束到达光电探测器。衰减的全光束的功 率可能会超出探测器的工作范围。在这种情况下,状态框中将显示错误消息。但是,如果通过狭 缝传输的功率落在图中所示的限制范围内,仍然可以使用狭缝测量光束形状。

11.6 初始设置

BP209首次与BEAM软件一起使用时,将应用以下初始设置:

参数	默认值
扫描速率	10.0 1/s
扫描速率校正	启用
波长	635 nm (BP209-VIS) 900 nm (BP209-IR,BP209-IR2)
光电二极管偏压(Photodiode Bias)	关闭
孔径宽度	全尺寸 (9 mm)
有效狭缝对	5 µm
扫描方法	扫描狭缝式
增益和带宽控制	
自动增益指数	打开
狭缝X带宽	125 kHz
狭缝Y带宽	125 kHz
自动基线校正	0

11.7 BP209图纸

BP209系列图纸——英制版本

11.8 狭缝和光电二极管的位置

任何时候都要求整个光束功率进入入射孔径,经狭缝扫描并被光电二极管探测。特别是对于发散 光束,操作员需要知道这些元件的位置和距离。

BP209-VIS

BP209-IR和BP209-IR2在狭缝和光电二极管之间使用非球面准直透镜:

11.9 BP209安装转接件图纸

11.10 M2MS-BP209图纸

11.11 与旧版硬件的兼容性

Beam软件向下兼容以下已停产的硬件组件:

- BP104-UV、BP104-VIS、BP104-IR、BP104-IR2 (4 mm孔径的狭缝式光束质量分析仪)
- BP109-UV、BP109-VIS、BP109-IR、BP109-IR2 (9 mm孔径的狭缝式光束质量分析仪)
- BC106-UV、BC106-VIS (相机式光束质量分析仪)
- BP1M2-50、BP1M2-150、BP1M2-300 (带转接件的线性位移台,用于BP10x狭缝式光束质 量分析仪)
- BC1M2-150、BC1M2-300 (带转接件的线性位移台,用于BC106相机式光束质量分析仪)
- M2SET-VIS、M2SET-IR (带BP109狭缝式光束质量分析仪、线性位移台和多种光学器件的 M²测量系统)

电学连接,尤其是旧版VT-80线性位移台的电学连接,以及机械设置,应按照该硬件相应文档中的描述操作,而使用方法请参照本手册。

旧版文档可以从Thorlabs手册存档中下载,即<u>www.thorlabschina.cn/manuals.cfm</u>。打开此页面并输入所需的产品型号;请注意拼写正确(比如"BP104-IR2/M"或"M2SET-VIS")。

11.12 缩略语列表

本手册中使用了以下缩略语:

2D 2维

- 3D 3维
- ADC 模拟数字转换器
- AL 铝
- AR 增透
- BC 光束质量分析仪相机式
- CA 计算区域
- cw 连续光(连续光源)
- GUI 图形用户界面
- ND 中性密度
- PC 个人计算机
- FPS 帧每秒
- ROI 关注区域
- USB 通用串行总线
- UV 紫外(波长范围)
- VIS 可见(波长范围)

11.13 Thorlabs '报废'政策(WEEE)

根据欧洲共同体的WEEE(报废电子电气设备指令)和相应国家法律的要求,Thorlabs为EC所有最终用户提供回收报废设备服务,且无需支付任何处理费用。

此服务适用的Thorlabs电气电子设备

- 2005年8月13日以后出售
- 标有打叉的带轮垃圾桶标示(请见下图)
- 出售给EC内的公司或机构
- 目前由EC内的公司或机构所拥有
- 仍保持完整,未拆分且未受污染

由于WEEE指令适用于独立的电气电子产品,因此,这种"报废"回收服务并不涉及Thorlabs其他产品,例如

- 纯OEM产品,即用户可以将组件组装到仪器中(例如OEM激光驱动卡)
- 组件
- 机械件与光学元件
- 用户拆分的部件(PCB、外壳等)

自行处理废弃物

如果用户没有将报废设备退还给Thorlabs,则必须将其交给专门的废弃物回收公司。请勿将其丢弃在垃圾箱或公共垃圾处理场所。

WEEE编号(德国): DE97581288

生态背景

众所周知,废弃物处理的分解过程中会释放有毒物质而污染环境。欧洲RoHS指令的目的是期望减少电子产品中有毒物质的含量。

WEEE指令的意图是强制回收WEEE。控制回收废弃物可以避免对环境造成负面影响。

11.14 符号列表

以下符号出现在BC106N光束质量分析仪或本手册中:

符号	含义
	通用串行总线(USB),是一种串行总线标准,用于将设备连接到主机。
CE	CE标志是在欧洲经济区(EEA)市场上投放产品必须加贴的强制性认证标 志。通过贴上CE标志,制造商自我声明该产品符合相关欧洲指令的所有基 本要求。它不保证产品符合欧盟消费者安全、健康或环境要求。
	打叉的带轮垃圾桶标示。报废电子电气设备(WEEE)是对多余、陈旧、损坏 或废弃的电气电子设备的一种粗略描述。请看 <u>Thorlabs '报废'政策(WEEE)</u>

11.15 认证与合规

EU Declaration of Conformity

in accordance with EN ISO 17050-1:2010

We:	Thorla	bs GmbH
Of:	Hans-E	Boeckler-Str. 6, 85221 Dachau/München, Deutschland
in accord	dance with	the following Directive(s):
2006/	42/EC	Machinery Directive (MD)
2014/	30/EU	Electromagnetic Compatibility (EMC) Directive
2011/	65/EU	Restriction of Use of Certain Hazardous Substances (RoHS)

hereby declare that:

Model: BP209 Series

Equipment: Slit Beam Profiler (Visible or Infrared)

is in conformity w	vith the applicable requirements of the following documents:	
EN ISO 12100	Safety of Machinery. General Principles for Design. Risk Assessment and Risk Reduction	2010
EN 61326-1	Electrical Equipment for Measurement, Control and Laboratory Use - EMC Requirements	2013

and which, issued under the sole responsibility of Thorlabs, is in conformity with Directive 2011/65/EU of the European Parliament and of the Council of 8th June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment, for the reason stated below:

does not contain substances in excess of the maximum concentration values tolerated by weight in homogenous materials as listed in Annex II of the Directive

On:

I hereby declare that the equipment named has been designed to comply with the relevant sections of the above referenced specifications, and complies with all applicable Essential Requirements of the Directives.

Signed:

mut

Name: Dorothee Jennrich Position: General Manager

03 February 2015

EDC - BP209 Series -2015-02-03

(F

11.16 质保

BP209的质保期是24个月,从发货之日开始计算。在质保期内,如果产品满足质保条款,Thorlabs 将负责维修或更换。

如需质保维修或其它服务,请客户将仪器寄回Thorlabs或其它指定地点。客户承担发往Thorlabs的运费;如果属于质保维修,Thorlabs承担发还客户的运费。

如果不是质保维修,客户还需承担返程运费。

如果从国外发货,客户可能还需要承担运输中产生的欧盟关税和其它税收。

如果根据我们的要求操作仪器,Thorlabs保证硬件和软件都能无故障运行。但是,Thorlabs不保证仪器、软件或固件也能在特殊应用中无故障和无干扰运行,Thorlabs也不保证此操作手册没有误差。由此造成的损坏Thorlabs不承担责任。

质保限制

如果造成仪器误差或失效是因为操作不当、使用非Thorlabs提供的软件或接口、产品修改、无资质维护或者在Thorlabs认为不安全的环境中使用或运行,前文中的质保条款将不再适用。

Thorlabs不接受也不同意进一步的索赔要求。对于某些应用,Thorlabs明确表示不保证此仪器的适用性或经济性。

Thorlabs保留在不另行通知的情况下修改操作手册和仪器技术数据的权利。

11.17 免责声明和版权

*Thorlabs*竭尽所能编好本文档。但对于其中所含信息的内容、完整性或质量,我们不承担任何责任。本文档的内容会定期更新和调整,以反映硬件和/或软件的最新状态。此外,即使遵守所述规格说明,我们也不保证该产品会正常运行。

无论在什么情况下,我们都不能保证通过购买此产品可以实现特定的目标。

在法律法规允许的范围内,对于因购买此产品而造成的直接损坏、间接损坏或第三方遭受的损坏, 我们不承担任何责任。任何情况下,任何责任均不得超过本产品的购买价格。

请注意,本文档的内容既不是任何之前或现有协议、承诺、声明或法律关系的一部分,也不是对 它们的更改或修正。*Thorlabs*的所有责任均来自单独的销售合同,其中还包括完整且适用的质保 规定。这些合同的质保规定既不受本文档所含信息的扩展也不受其限制。如果需要更多有关此产 品的信息,或遇到文档中未详细讨论的具体问题,请联系当地的*Thorlabs*经销商或系统安装程序。

版权所有。未经*Thorlabs*事先书面许可,不得将本文档整体或部分复制、传递或翻译为另一种语言。

版权所有©Thorlabs 2018。保留所有权利。